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Most dynamical problems in physics are governed by evolution equations.

Evolution equations are partial differential equations whose solutions one stud-

ies as functions of a distinguished independent variable t, called time. Exam-

ples are heat flow or diffusion governed by parabolic equations, vibration or

electromagnetism governed by hyperbolic equations, and quantum mechanics

governed by Schrödinger equations. These are the three types of equations stud-

ied in this book. Of course, there are many other famous evolution equations

such as the Navier-Stokes equations of incompressible fluids, the Yang-Mills

equations in Minkowski space, reaction-diffusion equations, hyperbolic conser-

vation laws, the Korteweg-de Vries equation, and so on.

The basic problem is to understand what happens when "arbitrary" initial

data are specified, say at t = 0. The mathematician's job is to specify the word

"arbitrary" and the properties of the solutions. Specifically, one asks for ( 1 ) local

existence (to find classes of functions for which at least one solution exists for at

least a nontrivial interval of time), (2) global existence (to find classes for which

solutions exist for all time 0 < t < oo), (3) uniqueness (to find function classes

in which there is at most one solution with given initial data), (4) regularity of

the solutions (differentiability, etc.), (5) singularities (Which initial data lead
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to singular solutions, and where are the singularities located?), (6) asymptotics

(What is the behavior as t —> oo?), (7) scattering (the relation between behavior

as / -» -oo and t -* +oo), (8) periodic solutions, traveling waves, and other

special solutions, (9) stability properties under various perturbations for finite

or infinite times, and ( 10) bifurcation under changes of parameters.

Nonlinear partial differential equations are notoriously difficult creatures. Up

to fairly recent times the few successes included the Cauchy-Kovalevsky Theo-

rem, Riemann's early study of shock waves, and Leray's analysis of the Navier-

Stokes equations in the 1930s. Since 1950 the influence of functional analysis

has been profound. This influence was in most cases more psychological than

substantive. In particular, the notion of a distribution allowed us to clarify the

concept of what a generalized (not necessarily differentiable) solution is. In

some cases a concept as simple as the contraction principle (that in a metric

space every contraction has a fixed point) could be employed in unexpectedly

subtle ways. Functional analysis in general helped us unify the multifarious

equations and methods in partial differential equations. Some modern tech-

niques which have been developed in the last thirty years include Nash-Moser

techniques, monotone and accretive operator theory, nonlinear semigroup the-

ory, and the compensated and concentrated compactness methods.
One area of rapid development has been the study of the small (i.e., small

amplitude) solutions. (This is sometimes called the weakly nonlinear theory.)

If a partial differential equation contains the nonlinear term f{u), where u =

u(t, x, ...) denotes a solution, and if the values under consideration satisfy

\u(t, x, ...)\ < s, then obviously the only behavior of / that matters is for
small u. Therefore, assuming / is a smooth function, only the leading term

in the Taylor expansion of / matters. If we write the expansion as f(u) =

cup + 0(up+l), then only the degree p matters. This book is concerned with

the question of the global existence of regular (i.e., highly differentiable) small

solutions of nonlinear heat and wave equations. That is, the initial data are

small and regular but are otherwise arbitrary, and they lead to the construction

of regular, small, global solutions. Only the degrees of the nonlinear terms at

u = 0 are relevant, and almost no additional structure assumptions are required

on them.
The central equation studied in the book is the nonlinear wave equation

utt - Au = f(ut, ux, utx, uxx), where x e W , t e E is the time, ux denotes

all the first spatial derivatives, etc., and A is the spatial Laplacian. (Direct

dependence of / on u is omitted for technical reasons.) The "nonlinearity" /

is an arbitrary C°° function whose minimum degree p among all its various

arguments is given. That is, p is the order of vanishing of / where all its
arguments vanish.

The simplest thing that can go wrong is that the solution can blow up in a finite
time. For instance, the ode dv/dt = v2 has the solutions v = (C - t)~l . For

any positive initial value C_1 at / = 0, the solution goes to +00 as t / C. For
partial differential equations the same phenomenon can happen; for instance,

the equation ut - Au = u2 has precisely the same blowing-up solutions. They

simply happen not to depend on x. But the partial differential equation also

has lots of spatially dependent solutions, and some of them decay to zero as

functions of time because of the dissipative property of the heat equation.
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For the wave equation as well, some solutions decay to zero, as Shakespeare

described in Henry the Sixth (1, 1,2):

Glory is like a circle in the water,

Which never ceaseth to enlarge itself,

Till by broad spreading it disperse to nought.

That is, a solution with finite energy spreads in E" . To guess the rate of spread-

ing, we could argue that the energy of a solution of the linear wave equation is

constant in time t and is closely related to the L2 norm J\u\2dx. A wave

spreads at a constant rate, and hence by Huygens' Principle in time t it has

spread within an approximate spherical ring of radius t and fixed width, which
has volume 0(t"~l). If it is approximately uniform over this ring and the L2

norm is approximately constant, its amplitude is 0{t~d), where d = (n - l)/2.

This is the correct decay rate d, although our derivation of it has been entirely

heuristic.
The basic theorem mentioned above for the nonlinear wave equation un -

Au = f(u¡,ux,utx,uxx) is that if the initial data are u(0,x) - e<p{x),

ut{0,x) = ey/(x), with <p and y/ being C°° functions with compact sup-

port, and if e is sufficiently small, then there exists a global C°° solution. This

theorem is valid for any C°° function / whose degree p at the origin (in all

its variables) is big enough: p > p*. The correct value for p* comes from the

interplay between the decay rate of linear spreading and the "peaking" effect of

the nonlinearity. We determine the correct value of p* by the following heuris-

tic argument. A typical nonlinear term is f(ux, ...) = \ux\p, a pure power.

An energy argument requires that the nonlinear term should have bounded L2

norm. Now

\\(ux)p\\2<\\ux\\p^\\ux\\2<ct-d^-lK

assuming the heuristic L°° decay rate. When the wave equation utt - Au = f

is solved, the energy of u is bounded according to a classical formula by the

time-integral of the L2 norm of /. Thus, what we need is the integrability of
t-d(p-i)   That iSj d{p-\)>\, or

p>p* = t + l/d = 1 + 2/(71- 1).

Thus, for instance, in three spatial dimensions the condition is p > 2, which

unfortunately just misses quadratic nonlinearities. More on this case later.

If the global existence theorem fails because the degree is too small (p < p*),

then we expect that some solutions will blow up in a finite time T*. We can

regard T* as a decreasing function of the size e of the initial data. John aptly

called T* the lifespan. Then it is natural to estimate T*. The same kind of

heuristic argument as above leads to the correct estimate. Indeed, the equation

has the form Lu = \\ux\\p with L a linear operator so that v = e"xu satisfies

the equation Lv — sp~i\\vx\\p = g and initial data independent of e . Thus, as

above, the L2 norm satisfies ||g-||2 < Cep~[rd(p~V . After integrating in t, we

want this norm to be bounded. Thus we get the condition eí>-i¿i-¿(p-i) = 0(1),

or
T*~Ce~k   where k = ({p - l)"1 - d)~x.

For instance, for dimension n = 2 and degree p = 2, we have T* ~ Cs~2.

The important case n = 3, p — 2 is borderline; and although John proved

blow up, the lifespan is very long: it turns out that T* > Cexp(l/e).



268 BOOK REVIEWS

Although various methods of proof have been given for these various the-

orems, some based on rather tricky estimates and on Nash-Moser techniques,

it has turned out that they can be carried out most efficiently using the simple

contraction principle! The space in which the contraction mapping acts is a

Sobolev space based on a combination of L2 and L°° norms with a sufficient

number of derivatives. One way to obtain the optimal results is by replacing

the usual derivative operators by the Lorentz-invariant operators of momentum,

angular momentum, and space-time dilation.

The reason that p — 2 is so important is that it is the first nonlinear power

in the Taylor expansion of / and therefore occurs most naturally. Klainerman

observed that, in the critical three-dimensional case (p = 1 + l/d), there is an
important class of nonlinearities for which all the small initial data nevertheless

lead to global solutions. These nonlinearities satisfy a natural structure condi-

tion, the null condition, that is related to the Lorentz invariance of the linear

equation. This idea is an important ingredient in Christodoulou and Klain-

erman's famous construction of solutions of the Einstein equations of general

relativity in a neighborhood of the flat Minkowski metric [1].

If / depends explicitly on u, the above heuristics are not applicable (because

the energy depends on the derivatives of u and not on u itself). There is a

remarkable theorem of John [4] that for u,t - Au = \u\p in three dimensions

the critical power is exactly p* = 1 + \[2.

For utt - Au + u = f(u, u,,ux, uíx, uxx), the so-called nonlinear Klein-

Gordon equation, the basic decay rate is a little larger: d — n/2. Therefore,

the condition of criticality is p > l + l/d = 1 +2/n . This includes the important
case p = 2, n — 3. This global existence theorem was first proved by Shatah

and by Klainerman and Ponce in the early 1980s.

The first results of this type for the small solutions of nonlinear wave equa-

tions were given by Segal [5] in 1968. The first proofs that used the simple

contraction principle were by the reviewer in 1974 and for more general nonlin-

earities by Shatah [6] in 1982. The role of Lorentz inversion was first observed

by Morawetz in the 1960s, and the key operators like angular momentum, di-

lation, and inversion were used explicitly in energy estimates by the reviewer

in the 1970s and were used to construct the invariant norms by Klainerman

in the 1980s. John's striking paper [4] stimulated other major contributions

by John himself, Glassey, Klainerman, Shatah, Christodoulou, Ponce, Sideris,

Pecher, Hörmander, and, more recently, Kovalyov, Lindblad, Li, and others.

References up to 1989 may be found in [7].

Now to the book by Li and Chen. It is a nice exposition of the existence of

small global solutions for three types of equations with very general nonlineari-

ties. There are three chapters. The most important chapter treats the nonlinear

wave equations discussed above. It uses the contraction idea in conjunction

with Klainerman's 1985 method of invariant norms and the authors' improve-

ments. A major theme in the book is the unification of the analysis of the global

solutions (if p > p*) and of the lifespan (if p < p*). This is done elegantly

using the contraction principle just the way it should be!

The history, however, is not accurately explained in this book. In particular,

the early work of Segal and others is not mentioned, nor are the origins of

the ideas on Lorentz invariance explained.   Although the use of the simple
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contraction idea on a combination of L2 and L°° spaces is presented by the

authors as their own concept, it actually goes back in this very same context

to the 1970s. Omitted from the book are the null condition, nonlinearities

f(u) independent of the derivatives, noninteger values of the degree p , and

the Klein-Gordon case.

The first chapter addresses nonlinear heat equations ut—Au = f(u, ux, uxx).

This is a good choice because it is a technically much simpler equation. The

basic L°° decay rate d = n/2 comes directly from the classical heat kernel.

With this value of d, the critical p* = 1 + 2/n and the lower bounds on the
lifespan T* are determined for the same reasons as above. The book carries

out the existence theory using the contraction idea. It mentions that the key

observation of blow up goes back to Fujita [2]. However, it barely mentions the

huge literature on existence theory for parabolic equations.

The third chapter discusses nonlinear Schrödinger equations in a similar way,

assuming some structure condition on the nonlinearity. Here again, d = n/2,
so that we ought to have p* = 1 + 2/n . However, the authors limit themselves

to proving a nonoptimal theorem with a more restrictive condition on p . They

should have indicated that there is gap between their condition and the known

blow up criteria [3]. In fact, there are some recent existence results in this gap.

This book is a very nice exposition of an important set of results. It is ex-

ceptionally well organized, even though there is no index and a few misprints.

One can learn many useful techniques that occur in nonlinear partial differential

equations, including the treatment of fully nonlinear problems, Galerkin's ap-

proximation method, weak convergence techniques, Sobolev estimates on com-

posite functions, Lorentz invariant norms, decay estimates, and, of course, so-
phisticated uses of the simple contraction principle. Not included are discus-

sions of the null condition, of blow up (except briefly), of general solutions (i.e.,

large ones, which is another whole story!), or of boundary problems. Neverthe-

less, it would make a nice choice for a part of a graduate course designed as a

sequel to a course on linear partial differential equations.
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