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with basically no references in the text, but it does contain a good bibliography,

especially of Russian references with some annotation. There are no exercises

or problems.
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A striking aspect of twentieth century mathematics is the emergence of new

fields of specialization motivated by the computer. The book under review may

be considered in this light. It deals with a specialized topic in theoretical com-

puter science and is written by a computer scientist. However, the mathematical

roots of the subject extend back to the pioneering work on computability of the

1930s. Research in this area is still going on today.

We begin with a brief historical account. In the 1930s mathematicians be-

came interested in studying computability in its widest sense. There were many

reasons for this, some of which were implicit in the work of Kurt Gödel. For

example, mathematicians wanted to understand the notion of a mathematical

proof. Now a mathematical proof, if written down in detail, is mechanically

checkable. Thus a definition of the most general type of mechanically checkable

procedure was desirable. This led to a study of computability.

In 1936 Alan Turing defined the Turing machine, a digital computer of a very

general type [6]. This gave rise to a definition of computability for functions

mapping the nonnegative integers N into /V. Such a function is computable

if its values can be calculated by one of the machines described in [6]. Turing

went further and proved the existence of a universal Turing machine—a digital

computer which can simulate all others. It is worth noting that the digital

computers of today are Turing machines with limited storage capacity. So it is

not surprising that a study of computability based on the Turing machine is of
interest to computer scientists.

At about the same time, other definitions—by Post, Herbrand/Gödel, Church,

etc.—appeared. Several of these were useful in solving problems in computer

science. (For example, the Post production, a rule for manipulating strings of

symbols, played a role in the theory of programming languages, the work of

Noam Chomsky on the grammatical analysis of language, and other topics.) A

seminal result was that all of the definitions are equivalent: the functions so de-

fined are called recursive functions. The equivalence provided evidence that the

definition of computability which emerged is a good one. (There is additional

evidence, which we will not discuss here.) As a consequence of the work on

computability, mathematicians obtained a definition of the most general type

of proof procedure, and the theory of recursive functions became the theoretical
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foundation for computer science. Once again in the history of mathematics, the

highly theoretical and the practical are seen in juxtaposition.
The introduction of computability to analysis came much later. In the 1950s

Grzegorczyk and Lacombe gave a definition of computability for functions of a

real (or complex) variable [1-4]. It turned out that all of these functions are con-

tinuous. So the definition does not cover computability for many basic functions

of analysis—e.g., the elements of Lp[0, 1] which are step functions with ratio-

nal jump points and rational values, etc. Nonetheless the work of Grzegorczyk

and Lacombe is of considerable importance in computable analysis. A study of

computability in a more general setting may be found in Pour-El/Richards [5].

We now turn to the book under review. In doing so, we shift our attention

from mathematics to computer science. Ko's work is concerned not merely

with computability but with "feasible computability". Although there are many

ways to define feasibility, polynomial time computability is of particular inter-

est to the computer scientist. Thus a recursive function / is polynomial time

computable (/ e P) if there exists a Turing machine M and a polynomial Pf

so that, for each argument n , the machine computes /(«) in at most P/(\n\)

steps. (Here \n\ is the length of the input « in a suitable encoding of the non-

negative integers.) Computer scientists also define the term "nondeterministic

Turing machine". Denote by NP the set of recursive functions which can be

computed by a nondeterministic Turing machine in polynomial time. One of

the most famous open problems in theoretical computer science is the P = NP

problem: Do the classes P and NP coincide? Many well-known combinatorial

problems are known to be in NP. The question is whether these problems can

be solved in polynomial time by an ordinary Turing machine.

The purpose of Ko's book is to inject polynomial time computability into

computable analysis. Ko's definitions are reminiscent of those of Grzegorczyk

and Lacombe mentioned earlier. (Thus his "polynomial time computable func-

tions of a real variable" are also continuous.) Since a real number is associated

with a sequence of rationals which converges to it, the real becomes a type-1

function. This function maps the nonnegative integers (type-0) into the ratio-

nals (also type-0). A function of a real variable becomes a type-2 operator,

mapping type-1 functions into type-1 functions. Operations on functions of a

real variable become type-3 operators. These definitions were difficult to work

with in the 1950s, and they remain so when polynomial time computability is

added.
Many of Ko's results are related to conjectures associated with polynomial

time computability. For example:

Theorem. Let

/:[0, l]2-*,

g: g(x) = max{/(x, y) : 0< y < 1}.

Define the operator Max by Max(/) = g. Then P = NP if and only if for

all polynomial-time computable real functions f, Max(/) is polynomial-time
computable.
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In addition to maximization, the book has results on integration, differen-

tiation, approximation of functions of a real variable by polynomials, and a

variety of other topics. As the author makes quite clear, some of this material

is a straightforward adaptation of results and proofs in computable analysis to

polynomial time computability (cf. [5]).

We have already remarked that Ko deals with polynomial time computability,

whereas Pour-El and Richards [5] investigate computability. There is another

difference, a difference in scope. Throughout his book Ko remains concerned

with continuous functions of a real variable. Beginning with Chapter 2, Pour-El

and Richards deal with computability on a Banach space—which leads them

to wave propagation, heat dissipation, computation of eigenvalues and other

topics from classical analysis, functional analysis, and physical theory.

For a mathematician there is one disconcerting aspect of Ko's book. There

is a proliferation of definitions for a single concept. (This is not the case when

dealing with computable analysis.) Consider, for example, the treatment of

the Weierstrass approximation theorem. Ko gives three inequivalent defini-

tions for "polynomial time computable sequence of polynomials"—definitions

6.6(b), 8.1(a), and 8.1(b). He dismisses 6.6(b) and proves that the Weierstrass

approximation theorem holds for definition 8.1(b) but not for 8.1(a). It would

be nice to know whether any of these definitions are useful in solving problems

in computer science.

Polynomial time computability is one possible definition for feasible com-

putability. There are others. In the future, some of these may be scrapped and

others may be added. It is not clear what role polynomial time computability

will eventually play in the emerging discipline of computer science. We will

have to wait and see.
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