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One of the most appealing features of Riemann surfaces is the variety of

mathematical fields in which they arise as a basic object of study. Indeed, the

point behind the Riemann-Klein-Weyl (1851-1913) introduction of Riemann

surfaces is that they are, at once, both one-dimensional complex manifolds

and algebraic curves, properly belonging to both the fields of algebraic geom-

etry and complex differential geometry. Of course, even at those times in the

early history of Riemann surfaces, one could study Riemann surfaces as two-

dimensional real manifolds, as Gauss (1822) had already taken on the problem

of taking a piece of a smooth oriented surface in Euclidean space and embedding

it conformally (i.e., preserving angles and orientation) into the complex plane.

A fourth perspective emerged from the uniformization theory (1882-1907) of

Klein-Poincaré-Koebe, who showed that every Riemann surface, which by def-

inition is a connected surface equipped with a complex analytic structure, also

admits a homogeneous Riemannian metric. In the case where the surface is a

closed surface of genus g, this means that neighborhoods on the surface are

isometric to neighborhoods on the round sphere, the flat Euclidean plane, or

the constant negative curvature hyperbolic plane for g = 0, 1, or > 1, re-

spectively. Poincaré (1882) then began a study of Fuchsian groups (discrete

subgroups of PSL(2, R) ) and the relationship between the group theory and

the homogeneous geometry: a basic example in this subject is a representation

of the fundamental group of a closed surface of genus g > 2 as a (torsion

free) subgroup V of PSL(2, R), with the quotient 0(2) \ PSL(2, R)/T being
a Riemann surface equipped with a hyperbolic metric.

In studying Riemann surfaces, one is naturally led to a study of their moduli

and to consideration of various spaces of moduli of Riemann surfaces. We

will focus on Teichmiiller's moduli space of surfaces. Of course, each field of

mathematics and each perspective on Riemann surfaces offers its own definition

of the Teichmüller space Tg of closed surfaces of genus g : we will follow

Tromba and adopt the viewpoint of Riemannian geometry as follows. Let M

be a smooth closed oriented surface of genus g, and let £? denote the space of

all compatible complex structures c on M. We observe that a diffeomorphism

f : M —> M pulls back a complex structure c on M to a new complex structure

f*c on M. Thus the group Diff0 of diffeomorphisms homotopic to the identity

acts on W by pullback, and we define the Teichmüller space ¡7~g to be the

quotient space ZTg = ^/Diff0 .
The case of the torus (g = 1) is understood completely and serves as a

motivating example. Pick a pair of oriented curves (yi, y2) on M = T2 that

generate %\M (and whose ordering is compatible with the orientation of M )

for us to use to track the homotopy class of a diffeomorphism / : M —» M.

Then, the uniformization theorem (along with some normalization) permits us

to find, for each_complex structure c on M, a conformai realization of the

universal cover M of M as the complex plane C (so that the projection map
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p : M = C —> M = T2 is conformai) and the curves y\ and y2 correspond

to the deck transformations zhz + 1 and z h-> z + x, where the choice of

orientation forces Im x > 0. (Even here there is a choice of perspective in that

we might have said that the uniformization theorem provides M with^a flat

metric g(c) which lifts to a flat metric g(c) on M ; we then develop M onto
the flat plane C with the deck transformations corresponding to y\ and y2

being carried over by the holonomy map to the Euclidean isometries zmz + 1

and z h-> z + x.) Thus, to a complex structure c we associate the complex

parameter x = x(c) in the upper half space U — {x | Imr > 0} . Of course,

since any quotient C/ (z h z + 1, z h z + i) is a torus, all parameter points

t in U are realizable, and, in fact, the parameter space U is precisely H7~\ : If

there were ace? and an / e Diff0 s.t. x(f*c) = x(c), then the map / would

lift to a holomorphic homeomorphism F : C —► C (so that F(z) = az + b)

whose composition with the generators zhz + 1 and z •-> z + x of the deck

transformation group were those same generators, i.e., F(z) = z, forcing / =

identity map.

Thus, we see that we have an explicit description ^[ ~ U of f7[ as a com-

plex manifold which admits a complete Kahler metric (the Poincaré hyperbolic

metric of negative sectional curvature) and which also possesses a rich function

theory intimately connected with the metric and the metrically natural compact-

ification U = U U R U oo . Even without this inspiring example, the definition

of Hg provokes many questions. Is t7~g a manifold? Is it a complex manifold?

How should we model the tangent and cotangent spaces? Are there natural

metrics? Are there natural embeddings into C" or R2" ? Are there natural

compactifications? What can be said about the function theory? The history

of Teichmüller theory is a story of new perspectives on Riemann surfaces and

maps between Riemann surfaces contributing increasingly sophisticated answers

to questions further and further down this list.

Fricke and Klein ([FK]; see also [K, Ab]) thought of a Riemann surface
in terms of the description of the uniformized Riemann surface as 0(2) \

SL(2, R)/r, where Y is the image of a representation in SL(2, R) of the

fundamental group n\M of the surface. Here, we are to think of a point in ^

as being represented by the discrete subgroup Y s %l M (with two isomorphic

subgroups representing the same point in ^ if and only if they are conjugate

within SL(2, R) ). The group T can be completely determined in terms of some

algebraic invariants (e.g., the traces) of a finite generating set of T; moreover,

one can make a judicious choice of generators for Ti\M so that the algebraic

invariants, viewed as functions of T in ¿Tg , provide global real analytic coor-

dinates on ¿7~g . The answer to the first question on our list as to the manifold

structure on Teichmüller space is that «^ is topologically a6g-6-dimensional

ball. (The same result was later obtained by Fenchel and Nielsen (see [Ab]) via

a different, more geometric, view of the group T and the quotient H2/T, where

T acts upon the hyperbolic plane H2 by isometries. They obtained geometric

global coordinates for Tg , including, for example, the lengths of the geodesic

representatives of a particular family of elements of n\M.)

The next several breakthroughs in this selective history are due to the com-

plex function theorist Teichmüller ([TI, T2]; see also [Ab]), who, following

Grötzsch, had the insight to focus on maps between inequivalent Riemann
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surfaces that were not conformai. After all, if two complex structures c\ and

c2 on M are equivalent in ETg if and only if there is a holomorphic self-map
/ : (M, c\) —► (M, c2) homotopic to the identity, then two complex structures

C\ and c2 are inequivalent if and only if no such map is possible. Teichmüller

also introduced variational problems to the subject by posing and solving the fol-

lowing variational problem: Given two inequivalent Riemann surfaces (M, c\ )

and (M, c2), find a map / : M —> M in the homotopy class of the identity map

id : M -* M which has the least (in the L°° sense) possible quasiconformal

dilatation K(c\, c2), which for a smooth / refers to the ratio of maximum to

minimum eigenvalues of the differential df.
The (unique) solution to Teichmüller's problem depends on a space of ten-

sors which are ubiquitous in Teichmüller theory, the space A2(c) of holo-

morphic quadratic differentials on a Riemann surface (M, c). These locally

have the form <f>(z)dz2 where <f>(z) is holomorphic, and they admit a pic-

ture as an orthogonal pair of singular foliations on (M, c) (given locally by

the lines {ReÇ = const} and {Im£ - const} for the canonical coordinate

C = Jz \j4>(z)dz1 away from zeros of <f>(z) ). The Teichmüller map has the

form of a stretching by a factor e' in the direction of one of these foliations

and a shrinking by a factor e~' in the other so that t = 0 corresponds to a con-
formal map, and, as t -+ oo, the resulting structures leave all compacta in !Tg .

Teichmüller defines a complete metric dj on ¿7~g by dj(c\, c2) = j\ogK(c\, c2).
For a fixed holomorphic quadratic differential defining a fixed pair of singular

foliations, the family of structures {cj defined by letting t range along the

real line determines a geodesic in this metric dr with dT(co,c,) = t. This
represents substantial progress on the third and fourth questions on our list: we

now have the global structures on ^ of a metric and rays of geodesies, and we

understand how these structures on ETg relate to geometric deformations of the

surfaces which represent the points in ZTg .

The modern theory of Teichmüller spaces began in the 1950s and 1960s

with Ahlfors and Bers, who founded a theory of Teichmüller spaces, Riemann

surfaces, and Fuchsian groups upon the elliptic partial differential equation

w2 = pwz associated to a quasiconformal map. Here, important progress

resulted from the broadening of their focus away from only the Teichmüller

extremal quasiconformal maps to the space of all quasiconformal maps and the

space of tensors 33 = {p. = w2/wz} , called the space of Beltrami differentials,

a space holomorphically equivalent to the space W of all complex structures

used above. Ahlfors [Al] showed that Teichmüller space has a natural com-

plex structure, and then Bers [Al] showed that the natural complex structure

on 3§ descended to EFg, so that !Tg was a complex manifold, with (Ahlfors

[A2]) cotangent space T*ETg = A2(c) and tangent space naturally represented

by a subspace %3§ c 3S of Beltrami differentials that were harmonic with re-

spect to the non-Euclidean metric on (M, c). Following a suggestion of Weil,

Ahlfors [A2, A3] introduced a new metric on 3g~, the Weil-Petersson metric,
which he showed to be Kahler and of negative holomorphic sectional curvature.

Using quasiconformal deformations of Fuchsian groups, Bers [B] exhibited a

holomorphic embedding of ^ into C3g~3, and later Bers and Ehrenpreis [BE]

showed that ¡7g was a Stein manifold.

In the late 1970s Thurston [Thl] reintroduced purely geometric methods
into Teichmüller theory, both for the development of the theory and also for
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the study of geometric structures on 3-manifolds. Central to his investigations

was the hyperbolic metric structure on the Riemann surface, with its global

structure and nontrivial deformations being encoded in the structure of the

space of simple geodesies (both closed and not closed) on the hyperbolic sur-

face. To get some idea of the change in viewpoint, consider a tangent vector to

Teichmüller space, which in the last paragraph was the Weil-Petersson dual to a

holomorphic quadratic differential. Thurston [Th2] explains that one deforms

a hyperbolic surface by cutting the surface along a simple geodesic of a partic-

ular type (which are typically not closed—this introduces some subtleties into

the operation), sliding one side of the cut to the right a small amount relative

to the other side, and regluing. There are, of course, natural geometric and

analytic correspondences [Wlp, HM] between the two viewpoints. In terms of

our questions about Teichmüller space, which perhaps are somewhat irrelevant

to this chapter, Thurston introduced a natural compactification for ¿Tg, acted

upon naturally by the homotopy classes of diffeomorphisms (the mapping class

group), which had the application of giving a very pretty classification of the

diffeomorphisms of a surface.

More recently, other fields have started applying Teichmüller theory to their

subjects. In dynamics Sullivan [S] has pioneered an approach to conformai

dynamical systems using the Ahlfors-Bers quasiconformal theory, and there are

now [KMS, V] clearly established connections between the dynamics of a billiard

ball on certain polygonal tables and the dynamics of Teichmüller's geodesies on

Riemann's moduli space of curves ¿%g = W/Diff+ , a quotient of ETg . Most

germane to the subject of Tromba's book, however, are the applications to and

from Riemannian geometry and physics which emerged in the 1980s.

Tromba's early research in Teichmüller theory was motivated by his inter-

est in the Plateau-Douglas problem for higher genus surfaces, i.e., the prob-

lem, given k curves in Em and a natural number g > 1, of finding an area-

minimizing surface of genus g spanning the curves, provided that the infimum

of area of connected (or disconnected, resp.) surfaces of genus p < g (p < g,

resp.) was not less than the infimum for area of connected surfaces of genus g.

An approach to this problem along the original lines of Douglas and Courant

(see [TT]) leads one to want to study the Dirichlet energy integral D(u) for all
maps u : (M, c) —► Em of surfaces, and for genus g > 1 or k > 1 it is im-

portant that D(u) depends upon the complex structure c of the domain. One

is naturally led to a study of D(u) and its critical points, the harmonic maps,
in their dependence upon the complex structure c and the point it represents

in moduli space. At about the same time, string theorists were also studying

functionals on the space of all maps of surfaces into a target manifold, which

gave added motivation to the global analysts' interest of providing a treatment

of Teichmüller theory from a purely differential geometric perspective.

This is the purpose of Tromba's book, and he does an excellent job of an-

swering many of the questions about the basic structure of Teichmüller space

on our original list in a self-contained way from the Riemannian geometry and

elliptic PDE point of view.

In particular, he takes a Riemann surface to be a two manifold equipped

with a complex structure or, via uniformization (which he proves), a hyperbolic

metric. Then ¡Tg is a quotient space of the space ? of complex structures or

the space ^#_ i of hyperbolic metrics; and the tangent space, complex structure,
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and metric on ^ are inherited from the same structures on fê or ^#_i . To
compare Riemann surfaces representing different points in Teichmüller space,

Tromba uses harmonic maps uYj, : (M, y) —► (M, h) (whose relevant theory

he carefully develops) rather than, say, the quasiconformal maps of the com-

plex function theorists. A large part of his theory, and this book is basically a

summary of some of the research of Tromba and coauthors on a Riemannian

approach to Teichmüller theory, focuses on properties of the energy E(y, h)

of the harmonic map y, h between two surfaces, viewed as a function of

(y, h) in !Tg x !Tg : parts of the basic structure of Tg are also consequences of

properties of E(y, h).
The book is well written, with new topics and techniques being carefully mo-

tivated, even for the reader who is not an expert in either Riemannian geometry

or Teichmüller theory. Of course, the discussion becomes technical in places,

but the well-organized exposition allows the reader to skip the more technical

passages on the first reading; the expert may wish to follow those passages care-

fully, as they contain genuinely new material and are not merely a translation

of older proofs into new language.

The only area in which the exposition falters is in the author's description of

the book's scope as an introduction. The book covers many foundational results

in Teichmüller theory from a single perspective; however, there are many foun-

dational results that are omitted—for instance, the theory of Teichmüller maps

and the Teichmüller metric, the Bers global holomorphic embedding of ^ into

C3*-3, and the Thurston theory. Some of this material, like the Bers embedding,

is not currently accessible via the author's approach, whereas some of it, like

a portion of the Thurston theory [W, M], is accessible. Further bibliographical

remarks would have greatly improved this introduction. Still, Tromba's mono-

graph covers much ground in a self-contained manner accessible to a wide audi-

ence distinct from that catered to by other recent books on Teichmüller theory

and so represents an important addition to the literature of this multifaceted

field.
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From the preface: "The purpose of this book is to discuss some natural

relations between geometric concepts of Cobordism Theory of manifolds with

singularities and the Adams-Novikov spectral sequence." Before discussing the

book itself, we will give some background and define the terms used in its

opening sentence.

Cobordism theory of manifolds (without singularities) was one of the great

successes of algebraic topology in the 1950s and 1960s. The basic idea is

the following: Two closed (i.e., compact, smooth, and without boundary) n-

dimensional manifolds, Mi and M2, are said to be cobordant if there is a

smooth (n + 1)-dimensional manifold W whose boundary is the disjoint union

of M\ and M2.
In particular, M2 could be empty, in which case we are requiring M\ to be

the boundary of some W. The most easily visualized closed manifolds, namely,


