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On one level, matroid theory is just a combinatorial abstraction of linear

algebra. We can define a matroid as a set E together with a collection 3§ of
finite subsets of E called bases such that:

(1) &*z\
(2) if X, Y £ & and X ç Y, then X = Y ;
(3) if X, Y  £ 3t   and  x  e X, then there exists y  £  Y  such that

(X-{x})U{y}£¿%.

It is easy to see that the bases of a finite-dimensional vector space satisfy these

axioms. In fact, more generally, the bases contained in any spanning subset

of a finite-dimensional vector space satisfy them as well, giving rise to vector

matroids. Likewise, the spanning trees of a finite connected graph satisfy these

axioms (where E is the set of edges of the graph), and the resulting matroids are

known as graphic matroids. So do the transcendence bases of a field extension

of finite transcendence degree (or any "spanning" subset of such an extension),

giving us algebraic matroids. We can also deal with infinite bases at the cost of

an additional axiom in order to get a reasonably interesting theory.

On another level, however, a large part of the fascination of matroid theory

is that so many different concepts from linear algebra, and from graph theory,

have analogues in the theory. Thus, independent sets, dependent sets, spanning

sets, dimension, the span operator, subspaces, hyperplanes (or subspaces of

codimension one), and the lattice of subspaces all have analogues in matroid

theory, as do circuits (simple closed paths) and bonds (minimal edge cut-sets)

from graph theory. Even more amazing is that each of these concepts may be

taken as the starting point for the theory, given an axiomatization, and used

to define all of the other concepts. For example, hyperplanes are maximal sets

containing no basis, whereas circuits are minimal sets not contained in a basis.
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A similar situation exists for topological spaces, where one may start with open

sets, closed sets, closure operator, etc. Matroids must surely hold the record in
mathematics for the largest number of equivalent axiomatizations, at last count

some 57 varieties, each in terms of one of 13 distinct concepts from the theory.

This versatility contributes greatly to the usefulness of matroid theory in

a number of branches of combinatorics, discrete geometry, and algebra. Not

the least of these branches is combinatorial optimization, where the existence

of a certain kind of greedy algorithm guarantees that a matroid is lurking in

the background. Several structures closely related to matroids, such as greed-

oids, oriented matroids, and submodular functions are also very commonly

employed in combinatorial optimization. Other areas of application include

structural rigidity, electrical engineering, graph theory, and stratification of the

Grassmannian.

Matroids were invented by Hassler Whitney in the mid-1950s, followed im-

mediately by Garrett BirkhofPs work on their lattice-theoretic equivalent, geo-

metric lattices. Some of the deepest work in the field was done in the 1950s by

W. T. Tutte, who gave an excluded minor characterization of several important

classes of matroids, including the regular or unimodular matroids. These ma-

troids are defined as those which may be represented as a vector matroid over

every field.

Matroids enjoyed an explosion of interest in the 1970s and 1980s. This

interest now has somewhat lessened and been replaced partially by the current

interest in oriented matroids, a variation in which each (ordered) basis is given

a sign indicating its orientation. A prototypical example would be any subset of
3-dimensional real affine space, in which the bases are the affinely independent

subsets of cardinality four, and the orientation of such a basis depends on

whether it forms a right- or left-handed tetrahedron. Oriented matroids have a

wide variety of applications from convex polytopes to Pontrjagin classes.

One particular area of the original (unoriented) matroid theory has remained

very active to the present day. This area may be called decomposition theory.

The concept of /¿-connectedness from graph theory has an analogue in ma-

troid theory, and a k-sum of two matroids is a particular construction which

combines two k-connected matroids so that the resulting matroid is not (k + l)-

connected. Decomposition theory describes how the matroids in a given class

of matroids must decompose under A>sums for certain values of k. Decom-

position theory frequently ties in with the older excluded minor results. Paul

Seymour initiated this branch of matroid theory, primarily with his celebrated

theorem on the decomposition of regular matroids. This theorem states that ev-

ery regular matroid decomposes via 1-sums, 2-sums, and 3-sums into matroids

that are either graphic matroids, matroid duals of graphic matroids, or one par-

ticular matroid known as R{0 . Among the consequences of this theorem was

the first polynomial-time algorithm for determining whether a given matrix is

totally unimodular. One of several workers who remain active in decomposition

theory is the author of the book under review.

There are already two standard and fairly complete references in matroid

theory, namely, Welsh's volume and the Cambridge University Press series

edited by this reviewer. What then is the usefulness of Oxley's book? First,

it covers some topics not covered in either of the older works. This includes

primarily the background for decomposition theory, such as an entire chapter
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on 3-connectedness, and thorough coverage of splitters. Second, it includes

self-contained proofs of some of the major excluded-minor characterizations
of hereditary matroid classes: namely, regular matroids, ternary matroids, and

graphic matroids. These are more accessible proofs which were not available

when the earlier volumes were written. Third, Oxley's book is more easily used

as a graduate textbook than the other two. It includes more background, such

as finite fields and finite projective and affine geometries, and the level of the

exercises is well suited to graduate students.

The book is well written and includes a couple of nice touches. One is an

appendix compiling "interesting matroids" and some of their properties. The

other is a whole chapter devoted to currently unsolved problems. To cover all of

this in a single volume, the author obviously had to omit some topics; these are

already well covered in the older volumes and not essential for an introduction.

These topics include most of the connections with combinatorial optimization,

nonbipartite matching, strong and weak maps, and the matroid invariants such

as the characteristic polynomial and Whitney numbers.

I would not recommend the book for those whose main interest comes from

combinatorial optimization. In any other case, however, this is a very useful

book. I recommend it highly both as an introduction to matroid theory and as

a reference work for those already seriously interested in the subject, whether

for its own sake or for its applications to other fields.

References

1. M. Aigner, Combinatorial theory, Springer-Verlag, Berlin, 1979.

2. G. Birkhoff, Abstract linear dependence in lattices, Amer. J. Math. 57 (1935), 800-804.

3._, Lattice theory, third ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc,
Providence, RI, 1967.

4. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G Ziegler, Oriented matroids,

Cambridge Univ. Press, Cambridge, 1993.

5. J. P. S. Kung, A source book in matroid theory, Birkhäuser, Boston, 1986.

6. E. Lawler, Combinatorial optimization: networks and matroids, Holt, New York, 1976.

7. A. Recski, Matroid theory and its applications in electrical network theory and in statics,

Springer-Verlag, Berlin, 1989.

8. P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980),

305-359.

9. K. Truemper, Matroid decomposition, Academic Press, Boston, 1992.

10. W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88 (1958),
144-174.

11. D. J. A. Welsh, Matroid theory, Academic Press, London, 1976.

12. N. White, ed., Theory of matroids, Cambridge Univ. Press, Cambridge, 1986.

13.-, Combinatorial geometries, Cambridge Univ. Press, Cambridge, 1987.

14.-, Matroid applications, Cambridge Univ. Press, Cambridge, 1992.

15. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935),

509-533.

Neil L. White
University of Florida

E-mail address : whiteOmath. uf 1. edu


