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At the end of the twentieth century, which sometimes is called the century of

information processing, applied mathematics has become increasingly interested

in the areas of signal analysis, high-resolution image processing, adaptive filter

theory, and the implementation of neural network models for pattern recogni-

tion and associative memory. One of the problems of these rapidly evolving

areas of high technology that has been receiving great attention is the efficient

encoding and decoding of analog and digital information. Because the capacity

of information transmission channels is always limited, a considerable amount

of research has been spent on data compression techniques in recent years. Typ-

ical applications that benefit from data compression techniques are high-speed

modems for computer communications and CD-ROMs scanned by wavelength-

tunable laser diodes. High-technology applications like video, high-definition

television (HDTV), and visualization in biomédical computing need fast algo-

rithms for time compression and perfect reconstruction of univariate and mul-
tivariate signals. The technique of subband coding used in high-performance

image processing for data compression purposes combined with the concept of

quadrature mirror filter bank for signal reconstruction form important exam-

ples of high-tech math. Data compression techniques that are actually available

allow the transmission of more than one hundred TV programs through a single

low-loss wideband photonic fiber transmission channel. Due to a data-parallel-

processing minisupercomputer, the real-time display of holographic images has

recently become a reality at the MIT Media Laboratory. Recent progress in

computerized hoxel (holographic element) technology suggests that holographic
TV for the display of three-dimensional images might be available within the

next ten years. Holographic TV will provide even more impressive images than

HDTV.
What is more, the growing interest in the areas of signal analysis, high-

resolution image processing, adaptive transversal filter theory, and the imple-

mentation of synchronized neural network models for pattern recognition and

associative memory revealed the mathematical fundamentals of a more ad-

vanced information theory called quantum information theory. It embeds the

classical electrodynamics into a macroscopic quantum field theory of bosons

and interprets the coherent wavelet transform as a relative quantum entropy

density function. The quantum entropy interpretation is of particular impor-

tance for synchronized neural network models. Although the range of this highly

promising field of research is presently unknown, powerful implementations of

macroscopic quantum field phenomena and their signal response are already

available. Macroscopic quantum field phenomena occur in the quantum Hall

effect in metal-oxide-semiconductor field effect transistors and heterostructures

at low-temperature and high-magnetic fields, in the power spectra of ultrasonic

cavitation oscillations in coherently driven liquids [7], as well as in many fields



278 BOOK REVIEWS

of remote sensing where the phase of the coherent wavelet may be measured as

well as its magnitude. Such filtering measurements may be viewed to contain

both a semantic content represented by the phase and a level of confidence in

that content represented by the magnitude of the coherent wavelet. Examples

of macroscopic quantum field phenomena and signal analysis of their response

occur in clinical and biomédical imaging, underwater acoustic imaging, radar

satellite imaging, geophysical tomography, and multichannel seismic imaging.

It passes by various names, including quantum holography and synthetic aper-

ture radar (SAR) imaging [6]. Besides satellite SAR, the most sophisticated and

spectacular applications of phase coherent wavelets providing invaluable sup-

port to radiological diagnosis are spatially localized nuclear magnetic resonance

imaging (MRI), magnetic resonance mammography (MRM), and magnetic res-

onance angiography (MRA), which revolutionized noninvasive clinical imaging

and visualization in biomédical computing by detecting and processing coherent

spin wavelets or magnons. Exactly as the word magnon describes the wavelets

of the macroscopic system of electron spins coupled together by exchange in-

teractions, photons represent by duality the particle aspect of electromagnetic

wavelets in vacuum. The photonic counterpart of MRI holograms is formed by

off-axis laser transmission holograms possessing horizontal parallax only. Due

to the capability to determine the distinct chemical signatures of different tis-

sue types and multifocal lesions, MRI scanners form a real breakthrough in

radiological diagnosis, far surpassing X-ray transmission computed tomography

(CT) scanners. Actually, clinical MRI owes much to the development of CT.

Although even the pioneers in high-resolution nuclear magnetic resonance spec-

troscopy (MRS) never believed diagnostic MRI would work—like Rutherford,

who said that anyone who believed nuclear radioactivity would be useful "is

talking moonshine"—MRI has become one of the main radiological tools avail-

able at all major diagnostic centers all over the world. It admits ray-tracing

fan postprocessors like massively parallel quantum holographic neurocomput-

ers which are useful for three-dimensional visualization of stacks of individual

tomographic planar slices. The three-dimensional display of the human nervous

system has recently become a reality at the University of Washington in Seattle.

The visualization in biomédical computing supports physicians by facilitating

radiological diagnosis and therapy control, both of which depend mainly on

noninvasive visual information.

Wavelet theory is nowadays a very active field of approximation theory with

a wide impact on signal analysis, high-performance imaging applications, and

adaptive transversal filter theory. It is concerned with the modeling of univari-

ate and multivariate signals with a set of specific signals. The specific signals

are just the wavelets. Families of wavelets are used to approximate a given sig-

nal (with respect to the L2 norm, say), and each element in the wavelet set is

constructed from the same original window, the mother wavelet. In the affine

wavelet set, the elements are time-scaled (dilated or compressed) and time-

translated (shifted) replicas of the mother wavelet. The time-scaling operation

includes normalization so that the intensity of the original mother wavelet is

preserved. Many desirable advantages exist for using spline functions to de-

rive mother wavelets. In the case of coherent wavelets the scale parameter is

replaced by another synchronization parameter, the time-dependent differential
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phase factor. In this context "differential" refers to phase differences between

the object and reference wavelets being processed and not to the phase of either

wavelet alone. It is the differential-phase variable which represents one quan-

tum of intelligent association within synchronized neural network models, and

multichannel magnetoencephalography proves that coherent oscillations within

the 40 Hz frequency band (40 Hz EEG) represent the reference wavelets of the

synchronized bursts generated by the central nervous system of mammalians

during sensory encoding, cognitive processing and motor behaviour. The sym-

plectically invariant Weyl symbol in the sense of pseudodifferential operators [3]

determines by the differential-phase variable and the parallax bundle, i.e., the

principal fiber bundle of symplectic frames over the individual hologram plane,

the quantum holograms of coherent photonic signal processing and the inter-

ference patterns of coherent wavelets in synchronized neural network models.

Similarly, the Weyl symbol determines by the differential-phase variable and

by the controlled magnetic field linear gradient bundle over the selective pla-

nar spin slice the MRI holograms which are formed by the holo-lines of the

learning matrices [ 1 ] of coherent spin wavelets in spatially localized MRI. In

the coherent case, which is as useful as affine wavelets for image compression

purposes, the hoxel-based scaling or warping procedure as well as the relations

to fractals and macroscopic chaotic dynamical systems of photons, acoustic

phonons, magnons, and so on is based on the stroboscopic projection of the

discrete Heisenberg subgroup. The phase coherent wavelets are more delicate

than the affine wavelets but afford the greatest spatial sampling efficiency.

The implementations of synchronized neural network models that are based

on coherent wavelets as the commerically available holographic neural tech-

nology and the analog complementary metal-oxide-silicon very large-scale inte-

grated early vision chip of high-wiring complexity [4] are closer to physiological

neural networks and therefore different from the ADALINE and MADALINE
perceptrons [ 1 ] of adaptive transversal filter theory and robotic path planning.

From the mathematical point of view, the generation of the wavelets from

a mother wavelet can be looked at as a C7-orbit where G denotes the affine

('at + ß') solvable Lie group of real matrices

(; f).    c>o)

in the case of the affine wavelets [2] with average-width parameter a and syn-

chronization parameter ß , and the real Heisenberg nilpotent Lie group of ma-

trices

in the case of coherent wavelets [5] with synchronization parameters due to

the signal response of macroscopic quantum field phenomena. In this context

the Lie group G represents the basic symmetries to analyze and synthesize the

wavelets which form the input and output signals.   To determine the unitary
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dual of G which encodes important properties of the wavelets, notice that the

connected affine group of the real line R admits only two nontrivial, noninter-

active, coadjoint orbits represented by complementary open half-planes. The

three-dimensional real Heisenberg group, however, implements symmetries at

the quantum level and admits infinitely many nontrivial, noninteractive, coad-

joint orbits. These are all transversal to the center line and planar, uniquely

determined by the central character, and endowed with a natural symplectic

structure due to the fundamental covariance identity of the unitary projective

oscillator representation of the symplectic group Sp(2, R) = SL(2, R). Thus

the generic nontrivial coadjoint orbit of the real Heisenberg group forms a cross-

section in the tangent bundle TS2 of the compact unit sphere S2 of the real

Euclidean vector space R3. There exists a noncanonical bijection between the

set of all symplectic frames at a point of the base manifold S2 and the linear

structure group Sp(2, R) of the principal fiber bundle over S2 .

From the physical point of view, the wavelets represent (/-coherent states,

and the natural dual reductive pair (Sp(2, R), 0(2, R)) inside the symplec-

tic subgroup Sp(4, R) of the special linear group SL(4, R) determines by the

decomposition of the unitary projective oscillator representation of Sp(4, R)

into discrete series representations the controlled magnetic field linear gradient

bundle. Notice that the automorphism group SL(2, C) = Sp(4, R) of the com-

plexified Heisenberg group letting its center pointwise fixed admits SU(2, C) as

a maximal compact subgroup. The corresponding maximal subgroup SO(2, R)

of Sp(2, R) = SL(2, R) generates the holographic lattice from the stroboscopic

projection of the discrete Heisenberg subgroup on the individual hologram

plane. The rows of the holographic lattice represent the phase-encoding steps

and hence the spatial resolution of the quantum hologram.

The natural action of SU(2, C) on R4 spanned by the Pauli spin matrices

induces the adjoint action of SU(2, C) on its Lie algebra which is a rotation of

R3 parametrized by the Euler angles. The transitive group action of SU(2, C)

on S3 allows one to identify the image S2 of S3 under the Hopf mapping

with a compact SU(2, C)-homogeneous manifold. The Hopf projector con-

sists of keeping the declination and azimuth angles for tomographic coronal

and sagittal planar spin slice imaging and forgetting about the third Euler an-

gle. To optimize the spherical harmonic homogeneity of the static magnetic

field, which is particularly crucial in high-resolution nuclear MRS, spatially lo-

calized MRI, MRM, and MRA, the magnetic field corrections determine the

geometry of the toroidal and saddle electrical shim and linear gradient sur-

face coils inside the bore of the superconducting magnet of the diagnostic MRI

scanner. Specifically, Maxwell pairs, Golay coils, quadrupole sets, and so on

are designed in terms of the group 0(2, R) which is the union of SO(2, R)

and a plane reflection copy SOv(2, R), and zonal and tesseral surface spher-

ical harmonics or associated Legendre functions. A part of the shimming and

controlled magnetic field linear gradient strategy for the macroscopic quantum

field phenomenon of superconductivity, harmonic analysis of the natural dual

reductive pair (SL(2, R), 0(2, R)) provides the singular value decomposition

of the Radon transform of CT in terms of tensor products of Laguerre and

Hermite functions, respectively, with surface spherical harmonics. Thus the

natural duality between symplectic and orthogonal groups links the theory of
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automorphic forms to the generation of coherent wavelets in electrical engineer-

ing and underpins the coherent wavelet transform with a deep string-like theory.

Because Hermite functions form the weighted matching polynomials of com-

plete bichromatic graphs, the connection of quantum holography to the layered

architecture of synchronized neural network models [6] becomes evident.

From the electrical engineering point of view, the wavelets give rise to the

wideband and narrowband ambiguity functions, respectively. The wideband

width capabilities of photonic fiber channel networks are attractive features of

photonic telecommunication systems, whereas narrowband width frequencies

are used in spatially localized MRI for selective planar spin slice excitation

purposes. It is this variety of different approaches which makes wavelet theory

such an exciting field of multidisciplinary research.

The theory of affine and coherent wavelets is still at a relatively early stage

of evolution, and new results and applications are developing rapidly [8]. The

book under review has its origin in a Ph.D. thesis submitted by the author to the

Department of Electrical Engineering of the Pennsylvania State University at

University Park, PA, in 1991. Its purpose is "to present wavelet theory so that

it is accessible to a broader audience than the current readers of research." For

image processing and filter theory, the book centers around the multiresolution,

the orthogonal or biorthogonal affine wavelets, and the wideband matched filter

concept. These kinds of wavelets and their desirable properties are presented

and discussed in a nontechnical manner along with diagrams. Unfortunately,

the pyramidal structure which is built in multiresolution wavelet transforms is

not described in terms of digital prefilters, sampling, and digital postfilters of in-

terpolating polynomial spline functions. Therefore, an efficient implementation

of multiresolution wavelet algorithms does not become obvious for the reader.

The irreducible unitary linear representations of the affine group and the

Heisenberg group admit many different concrete realizations which can be or-

ganized into families of wavelets. This circumstance seems to be at the heart of

the theory of wavelets. In the book under review the extremely powerful group

representational approach to the theory of wavelets and their applications is

completely neglected. In the case of coherent wavelets the author therefore

misses the important point of tomographic planar slice modeling for phase en-

coding in the macroscopic quantum field theory due to the restricted repertory

of tools that are available for his mathematical exposition. Can a book that

requires only college-senior-level mathematics give a realistic account of a com-

prehensive theory whose mathematical origin can be traced back to the work

by Alberto P. Calderón in the affine case and to the work by Erwin Schrödinger

and Hermann Weyl in the coherent case? The reviewer's answer is a clear "No,

it cannot." The title of the book is not well chosen, because the book lacks a
genuine mathematical theory and includes only some specific applications. It

can provide, however, the motivation to mathematicians not to learn just an-

other theory but to understand how powerful good mathematics can actually

be for applications in the areas of signal analysis, high-performance image pro-

cessing, and filter theory. In view of the aforementioned powerful applications

of coherent wavelets, the bias toward affine wavelets and, hence, the restriction

to the application of affine wavelets to wideband telecommunication purposes

is not justified. Nevertheless, the book can be recommended as a first survey

of high-tech math, as a source of useful information, and as the starting point
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of a more advanced and deeper study of the extremely flexible technique of

affine and coherent wavelets. From an advanced study of the (/-coherent states

approach to wavelets, the reader will recognize that macroscopic quantum field

phenomena and signal analysis of their response are actually the keys to high

technology and neural networks. Wavelets form an appropriate tool to leave the

classical theory behind.
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Johann de Groot would have loved this book! In his 1942 doctoral disserta-

tion he considered the problem of compactifying a (separable metrizable) space

X by adding a metrizable remainder of minimal dimension. This latter dimen-

sion is called the compactness deficiency, àeîX, of the space X. He formulated

a conjecture on how to characterize this number internally that captured the

imagination of scores of mathematicians. In 1980 Roman Pol disproved this

conjecture but only after a new branch of dimension theory had been developed

and had taken on a life of its own. This excellently written, exciting book is a

portrait of a living and dynamic area as well as a monument to de Groot built by


