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Fermat's Last Theorem provides the latest answer to the question: Why study

elliptic curves? Suppose that p is an odd prime and that a , b , and c are rela-

tively prime nonzero integers for which ap + bp + cp = 0. In [7], Frey predicted

that the elliptic curve with equation y2 = x(x-ap)(x + bp) would be incompat-

ible with the Taniyama-Shimura conjecture, a central conjecture about elliptic

curves which states that elliptic curves over Q are modular in the sense that they

arise from modular forms. After Serre analyzed Frey's construction, the second

reviewer was able to confirm Frey's prediction. (See [23, 24] and [21, 22].) As

we write this review, A. Wiles has just announced a proof of the Taniyama-

Shimura conjecture for a large class of elliptic curves over Q, including the

semistable ones, those with the simplest type of "bad reduction" [30]. Since

Frey's elliptic curves are semistable, Fermat's Last Theorem follows as a corol-
lary.

Those indifferent to Fermat's Last Theorem might nonetheless be attracted

by other applications of elliptic curves. For example, elliptic curves are used

in factoring integers, cf. [18]. Elliptic curves play a central role in the solution,

by Goldfeld, Gross, and Zagier, of Gauss's class number problem [11, pp. 231-

232]. Elliptic curves underly the theory of elliptic functions and modular forms.

They figure prominently in many articles in Communications in mathematical

physics and in the recent book From number theory to physics [28]. This list of
examples could be expanded easily.

The theory of elliptic curves belongs to an important branch of mathematics

called arithmetical algebraic geometry (or "arithmetic" for short). Arithmetic is
a synthesis of algebraic number theory and algebraic geometry: it is the study of

number theory in a geometric situation. For instance, consider again Fermat's

equation ap + bp + cp = 0, where a, b, and c are nonzero integers. Solving

it amounts to finding all pairs of rational numbers x and y which satisfy

xp + yp = 1 . One can make considerable progress toward solving this equation

by algebraic number theory (see, e.g., [9, 8, 26]). As soon as we start thinking

about rational points on the curve xp + yp = 1 , however, we have probably

stepped into the world of arithmetical algebraic geometry.

The simplest objects of algebraic geometry are points, lines, and conies. Next

in complexity come the elliptic curves: curves of genus one, furnished with a

distinguished rational point. Already for these we are faced with a plethora of
deep open questions.

Let E be an elliptic curve, and let E(Q) be the set of points on the curve with

rational coordinates. We can realize E as the projective plane curve associated

with a cubic equation y2 = x3 + ax + b . Then E(Q) becomes the set of pairs of

rational numbers which satisfy this equation, augmented by a single "point at

infinity" O on E. The well-known "chord and tangent" process endows E(Q)

with the structure of an abelian group, in which O is the zero-element. This



BOOK REVIEWS 249

group, now known as the Mordell-Weil group, was studied by Poincaré and by

Mordell, who proved in 1922 that E(Q) is finitely generated and, therefore,

isomorphic to the direct sum of a finite abelian group £(Q)t0rs and a free

abelian group Zr(£) of finite rank. The integer r(E) is known as the rank of E

over Q.
A number of unsolved problems concern r(E). First of all, there is at present

no known effective algorithm which calculates r(E). Secondly, one suspects

that r(E) is unbounded as E varies among all elliptic curves over Q. Although

recent examples [6] show that the rank can be 19 or even higher, it is not known

whether r(E) can be arbitrarily large. (The group E{Q)i0K has bounded order;

more precisely, a theorem of Mazur [19] states that £'(Q)tors is limited to fifteen

possibilities. Also, E(Q)t0TS is easy to compute in any specific example.)

Other problems about elliptic curves concern the L-function L(E, s), which

bears the same relation to E as does the Riemann zeta function to Z. The

function L(E, s) is defined by a Euler product which converges to an analytic

function on the half-plane 5R(s) > 3/2. One conjectures that L(E, s) extends

to an analytic function on the entire complex plane. This statement is a di-

rect consequence of the Taniyama-Shimura conjecture; conversely, Weil [29]

showed that the conjecture follows from an appropriate statement about the
analytic behavior of L(E, s) and its variants. Until recently, it was generally

thought that all results of this nature were too hard to prove. Now that we

know that semistable elliptic curves over Q are modular, we imagine that the

full Taniyama-Shimura conjecture is within reach.

Assuming that L(E, s) has been analytically continued, we can discuss the

behavior of L[E, s) at 5 = 1. The conjecture of Birch and Swinnerton-Dyer

states (in particular) that L(E, s) has a zero of order r(E) at s = 1. Theo-

rems of Kolyvagin [16] and Gross-Zagier [11] combine to prove most of this

conjecture for modular elliptic curves of low rank; see [10] for a survey of re-

sults of this type. Again, because of [30], the word "modular" becomes nearly

irrelevant. At the present time, the conjecture of Birch and Swinnerton-Dyer

seems wide open for elliptic curves with r(E) > 1.

Elliptic curves are extremely palpable objects, despite the variety and depth

of the problems that they pose. They are one-dimensional plane curves whose

real and complex loci can be visualized easily. They can also be tabulated:

Cremona [5] has made an extensive list of modular elliptic curves over Q and

has amassed a large amount of data for each curve on his list. (Cremona's

tables list the modular elliptic curves of conductor < 1000 ; the conductor of

an elliptic curve measures its "bad reduction" modulo various primes.) Even

the Taniyama-Shimura conjecture can be stated in elementary terms [20].

The accessibility and importance of elliptic curves have made them favorites
with authors and readers. Two classic survey articles about elliptic curves are

[1] and [27]. Among the recent books which have focused primarily, or exclu-
sively, on the theory of elliptic curves are [2-4, 12-15, 17, 25].

Rational points on elliptic curves, by Silverman and Täte is a new undergrad-

uate book on elliptic curves; it will appeal to graduate students and to profes-

sional mathematicians, both specialists in the theory and outsiders who want

to learn more. The book grew out of a series of lectures given by the second

author to an audience of undergraduate mathematics majors in 1961.  Those
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lectures centered around a proof of the theorem of Mordell which was alluded

to above: the finite generation of E(Q). The first half of the book follows

closely the 1961 lectures. (As the authors explain in their preface, lecture notes

were mimeographed in 1961 and have continued to circulate since.) New topics

include the behavior of points of finite order under reduction mod p , factoriza-

tion of integers using elliptic curves, points with integer coordinates on elliptic

curves, and complex multiplication. The authors conclude with an appendix on

projective geometry.

The exposition of this book is extremely nonthreatening: the reader is ad-

dressed directly as "you" and is invited to participate in a dialogue with the

authors and their theorems. There are a large number of exercises, of vary-

ing levels of difficulty. These are important off-shoots of the text; quite a few

are challenging. For example, the Taniyama-Shimura conjecture is first men-

tioned in a beautiful section of Chapter IV entitled "A Theorem of Gauss". In

that section the authors derive Gauss's formula for the number of solutions to

x3 + y3 = 1 over the finite field Fp and allude to the possibility of relating the

analogous numbers for other elliptic curves to certain holomorphic functions.

Later, in Exercise 4.6, the reader is called upon to formulate a conjecture linking

the number of Fp-valued points of y2 = x3 - 4x2 + 16 to the pth coefficient of

the series obtained by expanding gü^tiO _ <7")2(1 ~ qn")2 in powers of q .

(The authors include a doubly asterisked invitation to prove the conjecture.)

The book's exposition is rooted in the concrete: computations are carried out

explicitly, and the reader is encouraged to reproduce them and to experiment

with other examples. General results are often stated to orient the reader, but

they are not necessarily proved. For example, the chapter on complex multipli-

cation begins with a statement of the Kronecker-Weber theorem, which is illus-

trated by the fact that the quadratic field Q{y/p) lies in a cyclotomic extension

of Q. The chapter then explains how division points on rational elliptic curves

lead to two-dimensional representations of Gal(Q/Q). The authors show that

division points on the elliptic curve y2 = x3 + x generate abelian extensions

of Q(z') and conclude with a statement of Kronecker's Jugendtraum as it ap-

plies to Q(z') : each abelian extension of Q(z') is contained in a field generated

by division points ofy2 = x3-l-x.

Although not required, a personal computer or programmable calculator will

be extremely useful for the numerical examples included in the book. In this

connection, Silverman is distributing two computer packages which will interest

readers. The first is a stand-alone Macintosh application that serves as a calcu-

lator for elliptic curves. The second is a more recent Mathematica notebook,

written by Paul van Mulbregt and Silverman; it is distributed along with Tr^X

documentation. Instructions for obtaining these packages by mail are given

in the book's preface. Alternatively, readers with Internet access can down-

load the packages by ftp from gauss.math.brovni.edu—look in the directory

"ftp/dist/EllipticCurve. Also available in this directory is a list of errata for

the book. The list catalogs errors which have come to the authors' attention and
in most cases supplies corrections.
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Matroid theory, by James G. Oxley. Oxford University Press, London 1992, xi

+ 532 pp., $79.00. ISBN 0-19-853563-5

On one level, matroid theory is just a combinatorial abstraction of linear

algebra. We can define a matroid as a set E together with a collection 3§ of
finite subsets of E called bases such that:

(1) &*z\
(2) if X, Y £ & and X Ç Y, then X = Y ;
(3) if X, Y  £ 3t   and  x  e X, then there exists y  £  Y  such that

(X-{x})U{y}£¿%.

It is easy to see that the bases of a finite-dimensional vector space satisfy these

axioms. In fact, more generally, the bases contained in any spanning subset

of a finite-dimensional vector space satisfy them as well, giving rise to vector

matroids. Likewise, the spanning trees of a finite connected graph satisfy these

axioms (where E is the set of edges of the graph), and the resulting matroids are

known as graphic matroids. So do the transcendence bases of a field extension

of finite transcendence degree (or any "spanning" subset of such an extension),

giving us algebraic matroids. We can also deal with infinite bases at the cost of

an additional axiom in order to get a reasonably interesting theory.

On another level, however, a large part of the fascination of matroid theory

is that so many different concepts from linear algebra, and from graph theory,

have analogues in the theory. Thus, independent sets, dependent sets, spanning

sets, dimension, the span operator, subspaces, hyperplanes (or subspaces of

codimension one), and the lattice of subspaces all have analogues in matroid

theory, as do circuits (simple closed paths) and bonds (minimal edge cut-sets)

from graph theory. Even more amazing is that each of these concepts may be

taken as the starting point for the theory, given an axiomatization, and used

to define all of the other concepts. For example, hyperplanes are maximal sets

containing no basis, whereas circuits are minimal sets not contained in a basis.


