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A finite field is a field that has only finitely many elements, such as the ring

of integers modulo a prime number. The definition already places the area

of finite fields at the crossroads of algebra and combinatorics, with number

theory showing up right away! The area has seen a rapid growth in recent years

due to its many new applications and connections with other subjects such

as computer science, coding theory, discrete mathematics, algebraic geometry,

number theory, and group theory. As a result at least six books on finite fields

have been published during the last three years.

A typical problem recently studied in finite fields is to classify all cases for

which a known inequality (trivial or nontrivial) becomes an equality. These

problems may be properly placed in a growing subject called extremal finite

field theory. Theoretically, it may be more interesting to understand the generic

or average case of a problem than a special case. However, what is often more

useful in applications is the extreme case. It is generally harder to understand
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the extreme case in the sense that one may often require various ad hoc meth-

ods to deal with extremal problems. It seems to be especially interesting and

instructive when an extremal problem can be approached and solved using a

general and systematic method. A remarkable feature of recent developments

in extremal finite field theory is the increasing and successful use of various gen-

eral, powerful and systematic methods such as the Riemann-Roch theorem, the

Weil-Deligne estimate, modular curves, and the classification of finite simple

groups. Before discussing the six books individually, we will briefly explain a

problem which intersects the first four books under review, namely, the theory

of permutation polynomials.

Let Fq be a finite field of q elements with characteristic p. Let f(x) be

a polynomial in Fq[x]. As x runs over the q elements of the field Fq, the

polynomial f(x) takes on at most q distinct values. The extremal question

here is to classify all polynomials f(x) e Fq[x] which take exactly q distinct

values. Such polynomials are called permutation polynomials over Fq . Thus, a

polynomial f(x) £ Fq[x] of positive degree is called a permutation polynomial

if and only if f(x) induces a one-to-one map from Fq onto itself. For exam-

ple, the monomial x" is a permutation polynomial if and only if n and q - 1

are relatively prime. Since xq = x for all x e Fq , one can always assume that

the degree of f(x) is smaller than q . By Lagrange interpolation any map from

Fq into itself can be uniquely represented by a polynomial in Fq[x] of degree

smaller than q . Thus, the set of all permutation polynomials of degree smaller

than q forms a group isomorphic to the symmetric group S„ on q letters. One

may hope then to use polynomials over Fq to understand some group theory

questions. In fact, the first systematic study of permutation polynomials, which

was carried out in Dickson's thesis [Dil] in 1896, was motivated by his study

of finite simple groups. Dickson devoted an entire chapter to permutation poly-

nomials in his classical book [Di2]. Recently, permutation polynomials have

received significantly wider attention because of their potential applications in

cryptosystems and various combinatorial designs.

Our fundamental question here is the construction and classification of per-

mutation polynomials over Fq . This question can be formulated in a geometric

way. By definition a polynomial f(x) £ Fq[x] is a permutation polynomial if

and only if the plane curve f(x)-f(y) = 0 has no Fq-rational points other than

the points on the diagonal x = y. Thus, we need to estimate the number of

Fq-rational points on the plane curve f(x)-f(y) - 0. This last question can be

solved using Weil's theorem (the Riemann hypothesis for function fields). Re-

call that a polynomial g(x, y) e Fq[x, y] of positive degree is called absolutely

irreducible if it remains irreducible over the algebraic closure of the constant

field Fq . Weil's theorem implies that if a polynomial g(x, y) e Fq[x, y] is

absolutely irreducible of degree n , then the curve g(x, y) = 0 has q + On(y/q~)
points rational over Fg .

For q sufficiently large compared to the degree n of f(x), if f(x) - f(y)

has an absolutely irreducible factor over Fq other than x - y , Weil's estimate

shows that the plane curve f(x) - f(y) = 0 has at least q + On(y/q) points

(x, y) rational over Fq with x / y , and thus f(x) cannot be a permutation

polynomial. It turns out that the converse is also true. Namely, if f(x) - f(y)

has no absolutely irreducible factor over Fq other than x - y (in this case,

f(x) is called exceptional), then f(x) is a permutation polynomial whether
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q is large or not. Thus, for q large compared to n the construction and

classification of permutation polynomials are reduced to the construction and

classification of exceptional polynomials. We shall restrict ourselves to this case

because it is mathematically better understood. If n is close to q (the case that

is useful in combinatorial designs), the distribution of permutation polynomials

is somewhat random and not well understood. See [EGN] for a conjecture in

this direction.

Our goal then is to classify exceptional polynomials. If gi(x) and g2(x)

are both exceptional, their composition gi(g2(x)) is also exceptional. One

may then restrict to indecomposable polynomials (namely, those polynomials

which cannot be written as a composition gi(g2(x)) for some g¡ e Fq[x] with

deg(gv) > 1 ). If f(x) is exceptional and a e F*, then af(x + b) + c is also

exceptional for all b, c e Fq. Thus, one may normalize f(x) so that f(x) is

of the form xn + aix"~] H-\-an-iX, where ai = 0 if n is not divisible by p.

Currently, there are only two known classes of normalized indecomposable

exceptional polynomials. The first class consists of certain Dickson polynomials:

_.       .     (x + Vx2 + 4a\n     (X- Vx2 + 4a\n
D,(*,a) = (—2—) +(—2—)

0<i<«/2 x '

For a = 0 the polynomial D„(x, a) is simply the monomial x" , which is

exceptional if and only if (n, q - 1) = 1. The monomial x" was used in the
first construction of the RSA public key cryptosystem. For a ^0 the Dickson

polynomial Dn(x, a) is exceptional if and only if (n, q2 - 1) = 1 . The poly-

nomials D„(x, a) can also be used to construct a similar RSA cryptosystem.

The Dickson polynomials are closely related to the classical Chebyshev poly-

nomials of the first kind in the following way: Dn(x, 1) = 2Tn(x/2), where

T„(x) = cos(n arc cosx) is the Chebyshev polynomial of the first kind.

The second class consists of certain semilinearized polynomials of the form

f(x) = x(J2iaixip'~l)/d)d recently discovered by Cohen [Col]. Such a polyno-

mial f(x) is exceptional if and only if f(x) = 0 has no nonzero roots in Fq .

In the special case d = 1 one gets the well-known subclass of p-linearized poly-

nomials £),• aixP' ■ In the special case when there are at most two nonzero a¡ 's,

one essentially gets the subclass x(x<ß'~x^d + a)d , first discovered by Dickson

(Theorem 83 in [Di2]). It is currently unknown whether it is possible to find

any new indecomposable exceptional polynomials.

Most of the complication in the classification of exceptional polynomials

occurs when the degree n is divisible by the characteristic p . In fact, Schur

(1923) conjectured that if n is not divisible by p (the tame case), then any
normalized indecomposable exceptional polynomial of degree « is a Dickson

polynomial. This conjecture was proved by Fried [Fr] using the covering theory
of algebraic curves and group theory. Using Fried's theorem, Cohen [Co2]

proved a conjecture of Chowla and Zassenhaus which asserts that there is at

most one exceptional polynomial in the linear family f(x) + Xx if the degree

of f(x) is larger than one and not divisible by p . The wild case ( n divisible
by p ) is at present not well understood.

A weaker question is to classify all the possible degrees  n   (n >  1 ) of
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exceptional polynomials over Fq . It is conjectured that there is an exceptional

polynomial of degree n over Fq if and only if (n, q-1) = 1. If (n, q-1) = 1,

the monomial xn is exceptional, and one direction of the conjecture is proved.

In the special case when n is even and q is odd, the above conjecture reduces to

a well-known conjecture of Carlitz made in 1966 which asserts that there are no

exceptional polynomials of even degree if q is odd. See Hayes [Ha] where the

case «=10 was first proved. For a long time little progress was made toward

the Carlitz conjecture. Several years ago it was independently proved by Cohen

[Co3] using the theory of primitive permutation groups and by Wan [Wa] using

the technique of resolution of singularities that the Carlitz conjecture is true for

n = 2r, where r is a prime. Very recently the Carlitz conjecture was completely

proved by Fried, Guralnick, and Saxl [FGS]. Their proof is rather complicated

and involves the use of the covering theory of algebraic curves in characteristic

p and a very nontrivial application of the classification of finite simple groups!

As a consequence of their work, they showed that for p > 3, any normalized

indecomposable exceptional polynomial over Fq is either a Dickson polynomial

or has the property that its degree is a power of the characteristic p . Another

consequence of their work is the affirmative solution of a version of a conjec-

ture from Dickson's thesis: any normalized exceptional polynomial of degree p
(automatically indecomposable) must be of the form x(xtj,~lVd + a)d . These

results are consistent with the two known classes of normalized indecomposable

exceptional polynomials.

Shparlinski's book surveys the recent results on the computational and algo-

rithmic aspects of finite fields. My impression of the book is somewhat mixed.

The main advantage is its comprehensive list of literature and the vast amount

of interesting material covered. The book contains 1,306 references (most of

them published during the last five years) and an addendum describing many

more recent papers which were too late to be included in its main list of ref-

erences. These occupy about one third of the book. A particularly interesting

feature of the book is the many applications to finite fields of Weil's character

sum estimate, the theory of algebraic curves and analytic methods. The author

also raises many open problems; most of them follow a standard form, such as

"Generalize (or improve) the theorems, the results, the bounds, etc."

On the other hand, I have the impression that the author tried to include

everything he has seen in the literature. As a result the author spent at least

another one third of his book describing (without details) the vast number of

problems recently being studied and listing the many (sometimes incorrect) ref-

erence numbers. Part of the material and literature in the book is about number

fields instead of finite fields. The author states that the required background for

the book "is essentially limited to a knowledge of basic facts on finite fields

such as one can readily find in the excellent book by R. Lidl and H. Nieder-

reiter." On the contrary, most of the mathematical arguments in this book use

either techniques of analytic number theory or the theory of algebraic curves

over finite fields. Neither is seriously treated in Lidl-Niederreiter's book [LN].

In addition, there are many mistakes and typographical errors. For example,

on page 19 Theorem 1.8 (similarly Theorem 1.7 and also the main theorem in

[Sh]) says that there is a deterministic polynomial time algorithm that factors

almost all bivariate polynomials f(x, y) e Fp[x, y] of total degree n . This

formulation is misleading, because almost all polynomials of two (or more)
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variables of degree n over Fp are already irreducible for large p (this fact

follows from a direct counting argument without using Hubert's irreducibil-

ity theorem). Therefore, factorization is not needed for almost all bivariate
polynomials of degree n . The correct formulation of Theorem 1.8 should be

something like this: For almost all homogeneous fn(x, y) e Fp[x, y] of de-

gree n , any bivariate polynomial over Fp of the form f„(x, y) + g(x, y) with

deg(g) < n can be deterministically factored in polynomial time.

In conclusion, this book is an encyclopedic synthesis of recent activities re-

lated to finite fields. Despite my critical remarks Shparlinski's book does provide

a very useful source of new references, new results, and open problems, par-

ticularly for those who are interested in applying the theory of algebraic curves

and analytic methods to finite fields.

Lidl, Mullen, and Turnwald's book is a comprehensive monograph devoted

exclusively to the theory of Dickson polynomials and applications. For the most

part the book is concrete, well written, and self-contained. The exercises and

historical notes at the end of each chapter are helpful for students as well as

researchers who are interested in Dickson polynomials. A complete proof of

the Schur conjecture is also included in Chapter 6. This chapter is, however,

substantially harder to read than other chapters. The book is a very valuable

reference for people interested in Dickson polynomials and their applications

to finite fields.

Small's book is primarily a textbook for undergraduate students and begin-
ning graduate students who are interested in certain arithmetic aspects of finite

fields. It gives a clear but only partial introduction to several topics in finite

fields, such as permutation polynomials, the Chevalley-Warning theorem, Gauss

sums, diagonal equations, and zeta functions.

Mullen and Shiue's book is the refereed proceedings of the International

Conference on Finite Fields held at the University of Nevada at Las Vegas in

August 1991. The topics included are quite mixed, ranging from finite fields to

coding theory, algorithms, and various applications. Even though some of the

applied articles have no mathematical significance, the book does contain several

interesting and well-written papers on finite fields. In particular, the expository

papers written by experts provide a clear introduction to several basic topics

in finite fields. In addition, the book contains a number of interesting open
problems raised by the conference participants.

Jungnickel's book and Menezes's book are primarily directed to engineering

problems. Emphasis is on the constructive and computational side of finite

fields. However, the treatment of material in both books is from a mathematical

point of view. Therefore, they should be of interest to mathematicians working
on areas related to finite fields.

Jungnickel's book essentially focuses on normal bases in finite fields, namely,

a basis of F?* over Fq of the form {a, aq , ... , aq" *} . This is currently a very

active research area. The main question studied is to construct normal bases

satisfying additional properties motivated by problems in computational com-

plexity. Examples of such bases are self-dual normal bases and optimal normal

bases (an extremal question again). Jungnickel's book is well structured, fo-

cused and beautifully written. He proceeds at a leisurely pace and leads to such

recent developments as the theorem of Gao and Lenstra [GL], which completely
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classifies all optimal normal bases. The presentation is very concrete, coherent

and readable. It is an excellent textbook and reference for people interested in

normal bases and in the applications of finite fields to combinatorics.

Menezes's book consists of independent chapters written by six active work-

ers in the field. Each chapter surveys a different topic, includes a number of

research problems, and is reasonably self-contained. The various chapters are
clearly written and well coordinated (with some overlap). The book includes

much more material than Jungnickel's book. In addition to normal bases,

Menezes's book also includes factorization of polynomials, construction of irre-

ducible polynomials, discrete logarithms, the use of elliptic curves in public key

cryptosystems, and algebra-geometric codes. The presentation is mostly brief

but engaging. The book is an excellent reference for people interested in the

algorithmic and applied aspects of finite fields.
To conclude this combined review, I would like to remark that it does not

seem to be widely known in the mathematical community that there are many

people working on finite fields. This is an area which provides a fruitful and

productive meeting ground for mathematicians, computer scientists, and engi-

neers. Much collaborative work among the different groups of people is being

done and will undoubtedly continue to be done. As a result of this diverse and

explosive growth, finite field theory will likely divide into several branches. One

would thus expect to see many new books about finite fields in the near future.

The above-mentioned books serve as an introduction to what we can expect.

Acknowledgment

I would like to thank Hendrik Lenstra, Jr., for many stimulating suggestions
and several colleagues for helpful comments.

References

[Col]     S. D. Cohen, Exceptional polynomials and the reducibility of substitution polynomials,

L'Enseign. Math. 36 (1990), 53-65.

[Co2]     _, Proof of a conjecture of Chowla and Zassenhaus on permutation polynomials,

Canad. Math. Bull. 33 (1990), 230-234.

[Co3]     -, Permutation polynomials and primitive permutation groups, Arch. Math. 57 (1991),

417-423.

[Dil]      L. E. Dickson, The analytic representation of substitutions on a prime power of letters with

a discussion of the linear group, Ann. of Math. 11 (1897), 65-120, 161-183.

[Di2]      -, Linear groups with an exposition of the Galois field theory, B. G. Teubner, Leipzig,

1901.

[EGN]    R. J. Evans, J. Greene, and H. Niederreiter, Linearized polynomials and permutation poly-

nomials of finite fields, Michigan Math. J. 39 (1992), 405-413.

[Fr] M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.

[FGS]     M. Fried, R. Guralnick, and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math.
82(1993), 157-225.

[GL]       X. Gao and H. W. Lenstra, Jr., Optimal normal bases, Des. Codes, Cryptogr. 2 (1992),
315-323.

[Ha]        D. R. Hayes, A geometric approach to permutation polynomials over a finite field, Duke
Math. J. 34(1967), 293-305.

[LN]       R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.



290 BOOK REVIEWS

[Wa]       D. Wan, Permutation polynomials and resolution of singularities over finite fields, Proc.

Amer. Math. Soc. 110 (1990), 303-309.

[Sh]        I. Shparlinski, On bivariate polynomial factorization over finite fields, Math. Comp. 60

(1993), 787-791.
Daqing Wan

University of Nevada at Las Vegas and
Institute for Advanced Study

E-mail address : dwanOmath. i as. edu

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 30, Number 2, April 1994
©1994 American Mathematical Society
0273-0979/94 $1.00+ $.25 per page
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Since the 1950s there has been a significant interplay between multivariable

complex analysis and certain parts of partial differential equations theory. As

is typical, problems of complex analysis have been treated by PDE methods,

and in turn complex analysis has contributed concepts and driven certain lines

of development in PDE theory. The literature is now enormous. Among the

textbooks dealing specifically with this interplay we mention those by Morrey,

Folland-Kohn, Ehrenpreis, several by Hörmander, and some of the previous

ones by Trêves himself. His present book, which I shall refer to as "the text",

focuses on that part of the theory which may be characterized as arising from

the study of real submanifolds of a complex manifold. Its emphasis is more on

the basic local complex analytic and geometric foundations and concepts, which

are rather diverse. It deals less with more advanced real analysis or functional

analysis techniques. Thus, the "hypoanalytic" of the title is essentially a geo-

metric concept, not to be confused with the more familiar term "hypoelliptic",
which is analytic in nature.

If we except the complex Monge-Ampere equation with its considerable suc-

cess in the compact Kahler case, the predominant role of PDE theory in complex

manifold theory is in the linear realm, via the Cauchy-Riemann equations. In

the compact case the theory is wholly elliptic and well understood. In the non-

compact case the theory is much more difficult and less complete. One must

usually either deal with a boundary or place growth conditions at infinity. When

the complex dimension exceeds one, the boundary of a bounded domain in com-

plex space becomes of paramount importance. In favorable cases it is either a

smooth real hypersurface or contains smooth real submanifolds. The trace of

an analytic function on such a submanifold M is annihilated by all complex

vectors of type (0,1) tangent to M, i.e., is a CR function. The study of such
functions is very important to the function theory of the domain.

Real submanifolds M may be divided into two classes: (i) those for which

the tangent (0,1) vectors form a vector subbundle (of constant rank) of the

complexified tangent bundle of M, the CR submanifolds; and (ii) the rest,

those with CR singularities. The text very wisely leaves aside case (ii), for

which very little analytic theory has been developed, and begins with formally

integrable, or involutive, structures, i.e., subbundles V of the complex tangent


