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The study of mechanics, particularly the dynamics of planetary systems, was

for several centuries at the core of mathematics. From Newton onwards through

the further developments of Lagrange, Hamilton, and others an appropriate

framework was created in which complex dynamical problems could be inves-

tigated. Because of its central importance, it fostered the early development of

many concepts and techniques which now permeate the whole of mathematics,

beginning of course with the calculus but including also key ideas in geometry.

The relevance of geometry to mechanics was clear from the start, and it has

continued through the more sophisticated stages in its subsequent history. Al-

though algebra and the use of coordinates (particularly "canonical coordinates")

play an important role, a purely algebraic approach rapidly gets bogged down in

massive and unenlightening formulae which have neither theoretical nor prac-

tical utility.
The right general context which emerged for the study of mechanics was

that of symplectic geometry. This can be formally compared with the more

familiar Riemannian geometry, where the metric tensor g¡j is symmetric: in

symplectic geometry the analogous tensor is skew-symmetric. However, this

analogy is superficial; the motivation, techniques, and applications are totally

different. The basic example of symplectic geometry is R2n , with coordinates

Pi, ... , pn, qi, ... , q„ , where the basic datum is the exterior differential 2-

form
n

(0 = ^2 dpi A dq¡.
i=\

This example arises in mechanics as the "phase-space" of a particle in R" :
the q¡ are the position coordinates, and the p¡ are the corresponding momenta.

The key properties of ta are that it is nondegenerate, so that to" gives a volume

form, and that it is closed, i.e., dco = 0. Abstracted out, this leads to the

definition of a symplectic manifold.
A dynamical system on a symplectic manifold is defined by its Energy or

Hamiltonian function H which naturally generates the Hamiltonian flow, de-

scribing how the system evolves in time (the vector field of the flow is dual to

the 1-form dH, the duality being relative to to).
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The history of mechanics is also closely associated with the history of optics,

particularly in the work of Hamilton. The way in which geometrical optics

approximates the wave propagation of light is now understood in the framework

of symplectic geometry. More generally the modern theory of linear partial

differential operators makes extensive use of "microlocal" analysis, i.e., working

with phase-space and its symplectic automorphisms. This is also the framework

in which classical mechanics is seen as an approximation to a corresponding

quantum-mechanical system. In fact, it was the advent of quantum mechanics

and the realization that Hamilton's theory provided the right framework that

led in this century to a general revival of interest in classical mechanics and

symplectic geometry.

Traditionally conservation laws (e.g., of energy and momentum) have played

an important role in mechanics, but their status was not fully understood until

Emmy Noether showed how, in a Hamiltonian framework, continuous symme-

tries (invariance under Lie groups) lead quite generally to conservation laws.

Thus translational invariance leads to the conservation of linear momentum,

while rotational invariance leads to the conservation of angular momentum.

Conservation laws are exploited by fixing the values of the conserved quan-

tities and then working with a reduced system. For example, fixing the linear

momentum amounts to working relative to the centre of mass. This process

can be treated quite generally in the context of a Lie group G acting on a sym-

plectic manifold X. Under appropriate technical conditions one constructs a

"symplectic quotient" X//G. Note that

dim X/l G = dim X - 2 dim G.

It is important to realize that X//G is only a subspace of the ordinary quotient

X/G : it is the subspace obtained by fixing all the conserved quantities.

An important class of symplectic manifolds arises naturally in complex alge-

braic geometry and provides a motivation quite different from that of classical

mechanics. In Hodge's fundamental work on harmonic forms and the homol-

ogy of algebraic varieties, he appreciated the importance of the class of Kahler
metrics. These are Hermitian metrics which preserve the complex structure

(under parallel transport), and they are automatically symplectic. In fact, one
could say that

Algebraic Geometry—► Kahler Geometry

= Riemannian Geometry n Symplectic Geometry.

This link between algebraic geometry and symplectic geometry has proved to

be very fruitful. For example, the symplectic quotient X//G has been shown

essentially to coincide with Mumford's complex algebraic quotient X/Gc, where

Gc is the complexification of the compact Lie group G. For example, when

X = C" and G = U(n), acting by scalar multiplication, the quotient is the

complex projective (n - l)-space. Moreover, this story extends naturally to the

associated "quantizations". In fact, in the algebraic theory quantization came

first as the theory of invariants; Mumford's geometric invariant theory came
later.

One interesting by-product of this identification of symplectic quotients with

algebrogeometric quotients has been a general procedure, due to Frances Kir-
wan, for computing the cohomology of such quotients.
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Many interesting examples of symplectic manifolds are infinite-dimensional;

and although these naturally have to be treated with appropriate analytic care,

the symplectic formalism remains surprisingly useful. For example, Arnold

pointed out that the flow of an ideal fluid could naturally be interpreted in terms

of the infinite-dimensional manifold of volume-preserving diffeomorphisms of

the domain. More recent examples have arisen in gauge theories. For instance,

the space of G-connections on a closed Riemann surface is naturally an infinite-

dimensional symplectic manifold, and its symplectic quotient (by the group of

bundle automorphorphisms or "gauge transformations") turns out to be the

moduli space algebraic geometers associated to the Riemann surface for classi-
fying holomorphic Gc bundles.

A subplot to all the above has been that of hyperkähler geometry, related

to quaternions in the way kahler geometry relates to the complex numbers. A

hyperkähler manifold has three independent kahler (and so symplectic) struc-

tures and is a very special and rigid object. However, there are many interesting
examples (including in particular 4-dimensional Einstein manifolds), and the

symplectic quotient construction has a natural extension to the formation of

hyperkähler quotients X///G with a dimension formula

dim XI¡I G = dim X - 4 dim G.

Many examples of interest arise when X and G are both function spaces (and

so infinite-dimensional) but X/l/G is finite dimensional. For example, the

moduli spaces of instantons on R4 are all hyperkähler manifolds with this

origin. Other examples, due to Kronheimer, are related to the theory of rational

double points (Kleinian singularities) on algebraic surfaces.

Symplectic geometry is now under intensive study, partly motivated by ideas

from theoretical physics. Gromov has developed a theory of pseudoholomor-

phic curves on symplectic manifolds, and Floer introduced the homology groups,

now named after him, in the course of solving Arnold's conjecture about fixed

points of symplectic diffeomorphisms. These fixed points are related to classi-

cal questions of closed orbits of Hamiltonian flows and have a genealogy going
back to Poincaré and Birkhoff.

Marsden's book, based on a series of lectures for the London Mathematical

Society, centres around symmetry and symplectic quotients. Many examples

are given illustrating the utility and relevance of symplectic quotients. Mostly

these examples are of a traditional nature involving one or more rigid bodies,

and the relevant symmetries are rotations.

One topic treated at length is that of "phases" of the type discovered and

popularized by Berry and Hannay. The simplest case consists of a bead sliding

along a wire in the shape of an arbitrary closed planar loop. If the loop is

rotated slowly through 360°, one finds that the bead will, in its motion, be

displaced by a certain time-interval (or phase) from what it would have been

for a stationary loop. There are many other interesting examples, and they can

be understood in terms of the holonomy of an associated fibre bundle (arising
in the symplectic quotient construction).

Infinite-dimensional examples of Hamiltonian systems in which this Berry

phase occurs include the soliton interactions in integrable equations of the KdV

type—an extensive subject in its own right.

Another mechanical system where rotational symmetry is particularly helpful
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(and which Marsden treats in detail) is that of the "falling cat". How is it that

a cat, dropped upside down from an appropriate height, will twist so as to land

on its feet? It turns out that this is a subtle problem with an elegant solution,

and it is part of the more general problem of the dynamics of deformable bodies

and feed-back control.
Marsden's book is not a textbook but a series of lectures on various aspects of

symmetry in dynamics. There is enough background to make the book reason-

ably self-contained, and there is a very thorough bibliography and an indication

of where to go to pursue any of the more specialized topics. The style is readable
and stimulating.

Michael Atiyah

Trinity College, Cambridge
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Tube domains and the Cauchy problems, by Simon Gindikin. Translations of
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This book, which is part of the author's thesis, deals with research from the

early sixties carried out by a circle of former students of Gelfand. There are two

parts. The first one deals with a specific class of partial differential operators, the

second with certain generalized gamma functions associated with homogeneous
cones.

The classical classes of differential operators—elliptic, parabolic, and

hyperbolic—are all of second order, and their importance stems from physics.

The study of higher-order constant coefficient operators for their own sake was

made possible by the theory of distributions. In the middle fifties, three classes

of such operators P had been characterized by intrinsic properties as follows:

elliptic (all solutions of Pu = 0 analytic), hypoelliptic (all such solutions in-

finitely differentiable), and hyperbolic (fundamental solution with support in

a cone). In all cases there are corresponding properties of the characteristic
polynomials.

The first part of Gindikin's monograph is a second generation effort in the

same direction. The starting point is a separation of variables in time t and

space x £ R" and the corresponding Cauchy problem. Let Dt = d/idt and

Dx = d/idx be the imaginary gradients so that P(t, £) is the characteristic
polynomial of P(Dt, Dx). The author considers a class of operators for which

P(x, £,) does not vanish in some tubular region

T: Imr < -^(Imx) - const

where ^ is a fixed, finite convex function. Operators in this class have inverses

given by the Fourier-Laplace transform and operate on classes of functions

whose size in the x-directions is controlled by the dual of x • The class itself

is invariant under complex translations.   With the added condition that the


