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This book is a translation from the Russian of Boris Zilber's Doktor Nauk

dissertation. It contains a large and important chunk of Zilber's work, most of

it having already appeared in various papers from the late 1970s to mid-1980s.

This work has had a profound effect on the development and perspectives of

modern model theory.

Let me begin by mentioning two (seemingly unrelated) problems solved in

this book—one in combinatorial geometry/permutation group theory, the other

in first-order logic. The geometrical question requires some background. A

geometry here is a set X together with a closure operation cl(-) taking subsets

of X to subsets of X and with the properties:

(i) cl(0) = 0 .

(ii) c\({a}) = {a} for each a e X .

(iii) cl(Y) = \J{cl(Y') : Y' ç Y,  Y' finite} whenever Y is a subset of X.
(iv) For any 7 ç X, cl(cl(r)) = cl(7).
(v) If Y CX, a,beX,and b € cl(Yu{a})\cl(Y) ,then aecl(Yu{b}).

The geometry (X, cl) is called locally finite if the closure of any finite subset

of X is finite. The geometry is called homogeneous if for any closed subset Y

ofX and a, b e X\Y there is an automorphism of the geometry which fixes Y

pointwise and takes a to b. Examples of (countably) infinite, homogeneous,

locally finite geometries are:

(a) degenerate type: where cl(F) = Y for all Y c X ;

(b) projective type:   X is an infinite-dimensional projective space over a

finite field F , and cl(-) is F-linear closure;

(c) affine type:  X is an infinite-dimensional affine space over a finite field
F , and closure is F-affine closure.

Problem I. Are these the only examples of infinite, homogeneous, locally finite
geometries?

The second problem concerns finite axiomatisability in logic, which also re-

quires a little background for the nonlogician. Let L be a (countable) col-

lection of symbols R¡, for i £ I, each of a specified finite "arity" k(i),

say. Ri will "stand for" an k(i)-ary relation. By a first-order L-sentence

we mean an expression of the form (ßi*i) • • ■ (Qnxn)(Q>), where each Q¡ is V

or 3, and O is a finite Boolean combination of expressions, each of the form

Ri(xj{i), ... ,*/(*(/))) for some i e / and j(l), ... , j(k(i)) < n. Here the
Boolean connectives are "and", "or", and "not". So quantification is allowed

over elements but not over relations.

For example, if L consists of a single binary relation symbol <, then we

can express the statement "< is a linear ordering" by a finite collection of L-

sentences. By an L-structure, M, say, we mean a set X (the underlying set
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of M) equipped with a k(i)-ary relation S¡ on X for each i e I. S¡ is the

interpretation of R,. We usually assume that L contains a distinguished binary

symbol Ro which is always interpreted as equality. Often the underlying set X

oí M is also denoted by M. Any L-sentence a will then be true or false in the

structure M. Let X be a set of L-sentences (also often called an L-theory).

We say that M is a model of X if every a e X is true in M.

Let k be an infinite cardinal. X is said to be K-categorical if

(i) every model M of X is infinite (namely, has infinite underlying set),

and

(ii) whenever Mi = (Mi, S,)iei and M2 = (M2, T¿)ie[ are models of

X, each of cardinality k , then Mi is isomorphic to M2 ; namely, there is a

bijection between M i and M2 which takes S¡ to T¡ for each i £ I. X is

said to be uncountably categorical if X is K-categorical for some uncountable

k and totally categorical if X is K-categorical for all infinite k . The second

problem, possibly raised by Vaught, is

Problem II. Do there exist L and a finite set X of L-sentences such that X is

totally categorical? Or, in usual parlance, does there exist a finitely axiomatis-

able totally categorical theory?

In the book under review, Zilber gives proofs of:

Theorem I. Any infinite, homogeneous, locally finite geometry is degenerate, pro-

jective, or affine.

Theorem II. There is no finitely axiomatisable, totally categorical theory.

Thus Problem I is answered positively and Problem II negatively. In fact,

Zilber presents two proofs of Theorem II. The first uses Theorem I, and the

second uses instead a difficult number-theoretic result due to Siegel. Both proofs

depend on an analysis of the fine structure of models of uncountably categorical

theories. The point of view, techniques, and results in Zilber's book have given

rise to a new area in model theory, often called geometrical stability theory, and

have also, in my opinion, substantially altered the way we view model theory

and its relation to other areas of mathematics.

The modern systematic study of first-order logic is connected with attempts

in the early part of this century to axiomatise mathematics in some "simple"

fashion. The impossibility of a recursive such axiomatisation was shown by

Godel. On the other hand, there exist reasonably interesting chunks of math-

ematics which can be recursively axiomatised. For example, we can consider

the field of complex numbers as a structure (in the sense of model theory) con-

sisting of the underlying set of complexes together with two ternary relations

for the graphs of addition and multiplication. Let Xc be the set of first-order

sentences true in this structure. Let ACFq be the axioms for field theory to-

gether with the (infinite, recursive) set of sentences expressing that the field

is algebraically closed and of characteristic zero. Then ACFq is a subset of

Xc, and elementary model theory shows that every sentence in Xc is a logi-

cal consequence of ACFo . Similar results hold for the fields of real numbers

and p-adic numbers. A natural further question to ask is whether some given

structure M (a set equipped with certain relations) can be characterised up to

isomorphism by the set X of first-order sentences true in it, namely, whether
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X is absolutely categorical. The compactness and completeness theorems for

first-order logic show this to be impossible unless M is finite. This is simply

a cardinality question. If X is a set of sentences with an infinite model, then

X will have models in all sufficiently large cardinalities. Thus one is led to the

notion of A-categoricity, mentioned earlier. This notion is clearly nonvacuous

and moreover for interesting reasons. For example, any model of ACFq is (by

definition) an algebraically closed field of characteristic 0 and is thus determined

up to isomorphism by its transcendence degree over Q. Clearly, then, AFCo,

and thus also Xc , is K-categorical for all uncountable cardinals k (but is not

«-categorical ).

The starting point of modern stability theory was Morley's Theorem [M],

proved in 1963: if the set of first-order sentences X is A-categorical for some

uncountable X, then X is A-categorical for all uncountable X. Among the no-

tions introduced by Morley was a rank (Morley rank) that could be attached

to sets of first-order formulas in the context of an uncountably categorical the-

ory X. Subsequently Shelah initiated a brilliant and successful line of research

around trying to classify the possible functions /(X, -), where /(X, k) = num-

ber of models of X of cardinality k , up to isomorphism, and X is a first-order

theory. The resulting subject was called classification theory, expounded in

[Sh]. Among the notions developed by Shelah was that of a stable theory, a

far-reaching generalisation of the notion of uncountably categorical theory. In

the context of stable theories, an enormous technical machinery was built up,

in particular, a notion of independence in models, again generalising that de-

veloped by Morley. This is what is called stability theory. In the meantime,

Baldwin and Lachlan [BL] gave another proof of Morley's theorem, in which

the "fine structure" of models of uncountably categorical theories was somewhat

more in evidence. In particular, it was shown how a model M of an uncount-

ably categorical theory is determined in a specific model-theoretic fashion from

a "1-dimensional" subset of M. Zilber's line of research took off from the work

of Baldwin and Lachlan (and also Palyutin [P]), with a quite different emphasis
from Shelah's.

In order to describe in more detail these fine structure notions as well as

Zilber's work, let us take a slightly different point of view of structures and

theories which is nevertheless equivalent to the previous definitions.

By a structure M we now mean an infinite set (also called M) together

with a certain (countable) collection Dq(M) of distinguished subsets of various

cartesian powers Mn of M, with the feature that D0(M) contains the set

M ; Do(M) contains the diagonal in M2 ; and Dq(M) is closed under Boolean

combinations, Cartesian products, and projections M"+l -► M" . The sets in

D0(M) will be called the 0-definable sets in M.
Associated to M is then a language L, which has a symbol Rx for each

X e D0(M) (where Rx is K-ary if X ç Mk). The theory of M, Th(M),
is then the set of all first-order L-sentences true in M (under the natural in-

terpretation). We call M uncountably categorical if Th(Af) is uncountably

categorical. Attached to M is also a larger class D(M) of subsets of the vari-

ous M" , the definable sets. D(M) is defined to be the collection of X ç M"

(n varying) such that for some k > 0, 7 c Mn+k with 7 e D0(M), and

a e Mk, X = {b e M" : (b, a) e 7}. In fact, X e D(M) is said to be A-
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definable (where A is some subset of M) if 7 and a can be chosen as above

with a from A. Under the assumption that M is uncountably categorical,

it was shown that to each X e D(M), a dimension dim(A') can be assigned

with certain characteristic properties. In fact, Morley showed just that the di-

mension function is ordinal valued, and Baldwin subsequently showed it had

to be integer valued. In any case, the characteristic property is: dim(X) > 0

for all X e D(M), and dim(X) > n + 1 if there is an infinite pairwise disjoint

set {X, : i < oj} of members of D(M), such that for each i, X¡ ç X and

dim(X,) > n . This dimension function was traditionally called Morley rank.

We thus have a certain category associated to M : the category of definable sets

and definable maps between definable sets (where a map /: X —► 7 is said to

be definable if its graph is). Such a category has a formal resemblance to nat-

ural categories in mathematics, such as the category of algebraic varieties and

rational maps or the category of topological manifolds and continuous maps.

For example, if dim(7) = n , /: X —> 7 is a definable surjective map, and for

each a e Y dim(/-1({a}) = k), thendim(X) — n + k . (The level of generality

at which we are working, however, should be understood: M is an arbitrary

structure (in the above sense) whose theory is uncountably categorical.)

In the hands of Zilber this resemblance is exploited brilliantly. In partic-

ular, Zilber exhibits the role played by group objects in the category. It was

already known that M (our given uncountably categorical structure) contains

a definable subset, say, D, with dim(D) = 1 and that M is "determined"

in some technical sense by D (specifically, M is "prime and minimal" over

D). Zilber gives a precise mathematical form to this determination, showing

in Chapter V that M is built from D by a finite sequence of "fibre bundles

with transitive structure groups" in the sense of our category. For our purposes

let us call (X, Y, f ) a fibre bundle if X, Y are definable sets, / is a defin-
able map from 7 onto some definable set Z ç Xk , and there is a definable

family {Ga : a e Z] of definable groups, each a subset of X" (for some n)

and a definable family {ga : a e Z} of definable transitive actions of Ga on

Fa = f~l(a). Zilber proves (essentially) that there is a finite sequence of fibre

bundles (Xq, Y0, fo), ... , (Xn, Y„, /„) with X0 = D and Y„ — M. This is
what he calls the Ladder Theorem. If all the structure groups (and thus also

fibres) appearing in this sequence are finite, then elements of M correspond,

up to finite, with k-tuples from D for some k (we say M is contained in the

algebraic closure of D). But there do exist uncountably categorical structures

where some of the structure groups have to be infinite, an example being the un-

countably categorical (in fact, totally categorical) structure ((Z/4Z)(<u), +). As

an aside, let us remark that the structure groups in the Ladder Theorem make

their appearance as Galois groups, namely, groups of automorphisms of defin-

able sets. The manner in which they originate and the proof of their existence

are identical to the way in which differential Galois groups arise as algebraic

groups in differential algebra, although the differential algebraic context is be-

yond that of uncountable categoricity.

We can now return to the original problems posed above and examine their

connection with the above picture of an uncountably categorical structure. First,

what is the connection with homogeneous geometries? We need a small defini-

tion. For A some subset of M and a e M, define a to be in the algebraic
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closure of A, a £ ac\(A) if there is some A -definable set X, such that X is

finite and a £ X. Suppose D to be some 0-definable 1-dimensional subset

of M, which is in addition irreducible, in the sense that D cannot be parti-

tioned into two infinite definable sets. (In fact, any 1-dimensional definable set

in M can be written as a finite union of such irreducible 1-dimensional sets.)

Let us define a closure operation cl(-) taking subsets of D to subsets of D, by

cl(A) - acl(A)r\D. It then turns out that (D, cl) satisfies properties (iii), (iv),
and (v) in the definition of a geometry; we call (D, cl) a pregeometry. In fact,

irreducibility of D implies that (D, cl) is a homogeneous pregeometry. We

can attach a homogeneous geometry (D', cl') to D by simply quotienting out

D-cl(0) by the equivalence relation x £ c\(y). This equivalence relation will

not in general be definable. One of Zilber's fundamental insights was that these

geometries should be studied—if possible, classified—and then the information

used to understand the structure M.

Let us now assume that the uncountably categorical structure M is also co-

categorical. This imposes certain finiteness conditions on D(M). For example,

for each n < co the set of 0-definable subsets of M" is finite, and, as a

consequence, for every finite subset A of M, acl(^) is also finite. It follows

that the pregeometry (D, cl) mentioned in the previous paragraph is locally

finite, as is the associated geometry (D', cl'). It should be mentioned that

under the tocategoricity assumption the quotienting operation taking D to D'

is definable, whereby D', and even (D', cl'), can be considered as a definable

object in M too. Thus (D', cl') is a locally finite, homogeneous geometry,

whereby Theorem I applies.

In fact, in proving Theorem I, there is no loss in generality in assuming that

the geometry (D, cl) in the hypothesis of Theorem I actually originates from a

1-dimensional set in a totally categorical structure M in the way just described.

The theorem is proved by a beautiful combination of combinatorial and model-

theoretic methods. It is shown that if the theorem fails, then a certain incidence

structure, called a pseudoplane, is definable in M. A pseudoplane is a kind of

fuzzy projective plane: it consists of two infinite sets, P (points) and L (lines)

together with an incidence relation I ç P x L, such that any point lies on

infinitely many lines (and dually) and two distinct points lie on only finitely

many common lines (and dually). On the other hand, the "local finiteness"

resulting from w-categoricity enables Zilber to assign certain polynomials with

rational coefficients to definable sets in M. Essentially, if X is a definable set,

then px(x) is the polynomial such that whenever A is an algebraically closed

subset of D of cardinality m , then px(m) equals the cardinality of Xf\ac\(A).

Some highly nontrivial counting arguments involving the pseudoplane allow

further control over the structure to be obtained, resulting in the existence of a

definable 1-dimensional group G. The definable sets in this group are studied in

detail, using the information gained earlier. It is shown that there is a definable

vector space structure on G (over a finite field F) such that every definable

subset of Gk is a Boolean combination of sets defined by linear equations. The

geometry attached to the 1-dimensional set G must then be projective over F,

which suffices to show that the geometry on D is projective or affine over F,

proving Theorem I.

Theorem I thus yields local information about a totally categorical structure
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M, in that it describes quite accurately the structure of 1-dimensional definable

sets in M. Zilber is able to deduce global information from this, in particular,

that any group definable in M is abelian-by-finite. This is then used to show that

in the Ladder Theorem the structure groups (and thus the fibres on which they

act) can all be chosen to be of dimension at most one. With this information

Zilber proceeds to prove Theorem II. Nonfinite axiomatisability of X = Th(Af)

is proven by showing that for every sentence u of I, there is a finite subset A

of M in which a is true (when quantifiers are restricted to A). A will be a

sufficiently large finite "approximation" to M with enough symmetries. If M =

D, the basic features of the geometry on D are enough to find A . Otherwise,

induction on the length of the sequence of fibre bundles needed to produce M

from D, together with the above-mentioned bound on the dimensions of fibres,

plus further use of Zilber's polynomials allow A to be constructed.

In the last two paragraphs we have been discussing totally categorical struc-

tures. However, the "local-to-global" conclusions are also valid for uncountably

categorical M. Given a one-dimensional definable set D in M, we have seen

that the algebraic closure operation yields a pregeometry on D which we called

(D, cl). This pregeometry gives rise to a lattice (the lattice of closed sets),

and a crucial dichotomy is whether this lattice is modular or not. In fact, the

more important question is whether or not this lattice is locally modular: lo-

cal modularity means modularity after quotienting by some nontrivial closed
set. Local modularity of some (all) 1-dimensional sets in M is equivalent to

the nonexistence of definable pseudoplanes. Local modularity of (D, cl) again

yields (as Zilber shows in Chapter II) global consequences for M, such as all

definable groups being abelian-by-finite. The content of Theorem I is that all 1-

dimensional sets in totally categorical structures are locally modular. However,

there do exist nonlocally modular 1-dimensional sets outside the cu-categorical

situation. An example is the field of complex numbers. It is worthwhile elucidat-

ing the geometric content of the locally modular/nonlocally modular dichotomy.

Given a 1-dimensional set D, we can view 1-dimensional definable subsets of

D x D as "curves" over D. Nonmodularity of the geometry attached to D is

equivalent to the existence of an «-dimensional definable family of such curves

for some n > 2, namely, the existence of "nonlinear" curves.

Finally, connections with other work should be mentioned. Subsequent to

Zilber's announcement of his proof, Theorem I was proved by various other peo-

ple using differing methods. Cherlin in [CHL] proved it using the classification

of finite simple groups, specifically, the resulting classification of 2-transitive fi-

nite permutation groups. Evans [E] proved it using purely combinatorial meth-

ods. The most elegant proof is, for me, due to Hrushovski [H3], where model
theory almost completely replaces the combinatorics.

In [CHL] Theorem II was generalised to a wider class of structures, those that

are both ty-categorical and co-stable. In our outline above the reader may have

noticed that Theorem II was proved by showing that any sentence in X is true in

some finite structure. This suggested the conjecture that totally categorical theo-

ries are finitely axiomatisable modulo the infinite collection of sentences "there

are infinitely many elements". A special case of this conjecture was proved by

Ahlbrandt and Ziegler [AZ] using a combinatorial fact about projective spaces
over finite fields. The proof was generalised by Hrushovski [H2] to give the full
conjecture.
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Work of Hrushovski [HI] has also yielded more information on 1-

dimensional sets which are not necessarily <y-categorical. In particular, if the

attached geometry is modular and nondegenerate, then a 1-dimensional group

can be definable; and the definable structure on this group is essentially just

vector space structure with respect to some division ring.

Several model-theorists, most notably Ehud Hrushovski, have developed the

insights of Zilber far beyond the uncountably categorical context and even be-

yond the context of stable theories. Among such developments the existence of

definable groups and general analogues of the modular/ nonmodular dichotomy

have been crucial and have had substantial impact back on classification theory

á la Shelah.
Zilber has succeeded in his book in showing how linear geometry can be

recovered from model theory (this is the content of Theorem I). Another ques-

tion, which has been an abiding concern of Zilber, is whether algebraic geom-

etry can also be so recovered. The technical form this question takes is: given

a 1-dimensional set D (in, say, an uncountably categorical structure), if the

geometry attached to D is nonlocally modular, must there be an algebraically

closed field definable? Although this turned out to be false in full generality,

it has recently been shown to be true under the assumption that the definable

subsets of D" (various n) have a certain topological character, analogous to
the Zariski topology [HZ].

Although there are other concise treatments of the subject matter of this

book in print, or soon to be in print, it is well worth the effort to read Zilber's

monograph for its classical point of view, freshness of style, and richness of
ideas.
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