
BOOK REVIEWS 319

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 30, Number 2, April 1994
© 1994 American Mathematical Society
0273-0979/94 $1.00+ $.25 per page

Theory of entire and meromorphic functions. Deficient and asymptotic values

and singular directions, by Zhang Guan-Hou. Translations of Mathemati-

cal Monographs, vol. 122, American Mathematical Society, Providence, RI,
1993, xi + 375 pp., $182.00. ISBN 0-8218-4589-6

Introduction

An entire function is a holomorphic mapping W —> W . A function is mero-

morphic in the domain D, if it is holomorphic in D, except for poles. If we

speak of a meromorphic function without specifying D, it is understood that

it is meromorphic in W . A value is a point on the Riemann sphere W .

The Fundamental theorem of algebra (Gauss's doctoral thesis, 1799) is the

oldest result on value distribution. An easy consequence of it is the fact that a

polynomial of degree n has n complex roots (counting with proper multiplic-

ity). The entire function exp(z) behaves in a very different fashion: It omits

the values zero and infinity entirely and takes every other value infinitely often.

What can be said about the distribution of values of entire and meromorphic

functions in general? This is the subject of Nevanlinna Theory. The name

is chosen in honor of the brothers F. and R. Nevanlinna, who developed the

theory in the early 1920s. H. Weyl called the appearance of R. Nevanlinna's first

paper on the subject "one of the few great mathematical events of the century".

The field continues to be active: a bibliography compiled by A. A. Gol'dberg

covering the period 1953-1971 and the excellent survey article [GL02] contain

together about 1,000 citations. Nevanlinna Theory has important applications

in other branches of mathematics ranging from the theory of transcendental

numbers to probability theory and statistics and to theoretical physics.

This review, like the book under review, will restrict itself to the following

items:

1. Basic definitions
2. Nevanlinna Theory before the Nevanlinnas

3. The characteristic function
4. The first Fundamental Theorem ( 1 .FMT)
5. The second Fundamental Theorem (2.FMT)
6. Defects and the Defect Relation
7. Borel directions, Julia lines and lines of accumulation

8. Asymptotic values

9. Further work on Nevanlinna Theory

1. Basic definitions

We shall need some standard notation.

n(r, a, f) — number of ¿z-points of f(z) in the disk{z : \z\ < r}

(each point counted with its proper multiplicity).
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The counting function of the a-points of f is

^      ir n(t, a, f) - «(0, a, f)  ,„       ,n ...
N(r,a,f)= v       '•"       v        '•//</f + ?i(0>fl,/)logr.

The proximity function of oo with respect to f is

m(r,oo,f) = (l/2n) [ * log+ \f(reie\ dd ,
Jo

where log+ \x\ = sup(log |x|, 0)} .

The proximity function of a with respect to f is

m(r, a, f) = m(r, oo, l/(f-a)).

The Maximum Modulus of / is

M(r,f)= sup \f(z)\.
\z\=r

An entire function is of order X, if, for every e > 0, log+ M(r, f) = 0(r*+e)

as r-»oo.

2. Nevanlinna Theory before the Nevanlinnas

In 1879 E. Picard published his stunning

Picard's Theorem. A meromorphic function takes every value, with at most two

exceptions, an infinite number of times.

Picard's proof used the elliptic modular function; it was by no means ele-
mentary.

Further progress was made possible by Weierstrass's canonical product rep-

resentation of entire functions (1876). In 1892 J. Hadamard proved a repre-

sentation formula for entire functions of finite order from which it follows that

N(r, 0, f) and log+ M(r, f) are of the same order of magnitude, except pos-

sibly in the case of functions of integer order p with logM(r, f) « Arp for

some positive A . His proof needed difficult estimates of canonical products.

E. Borel found a proof of Picard's Theorem for entire functions in 1899

using only fairly simple properties of canonical products. He extended it to

meromorphic functions four years later. The crucial point was again the fact

that for an entire function N(r, a, f) and logM(r, /) are of the same order
of magnitude for all complex a with at most one exception.

In 1899 J. L. Jensen published a paper with the accurate, even if not modest,

title A new and important theorem in function theory. In the notation introduced
above, the theorem can be stated as

(a)       log|/(0)| = m(r, œ, f) - m(r, 0, f) + N(r, œ, f) - N(r, 0, f)

(slight modification, if /(0) = 0 or oo ).

3. The characteristic function

The Nevanlinnas rewrote (a) as

T(r, f) = N(r, oo,f) + m(r, oo, f) = N(r, 0, f) + m(r, 0, /) + 0(1)

as r —> oo .



book reviews 321

T(r, f) is the characteristic function of /.
The characteristic function is an increasing, convex function of logr.   If

T(r, f) = 0(\ogr) as r —> oo, then / is a rational function.

The order X and the lower order ß of the meromorphic function / are
defined by

\o%T(r,f)\
X = lim sup

ß = lim inf

logr

\ogT(r,f)
(r-»oo).

logr

The maximum modulus of a meromorphic function can behave in a very

irregular way, and the lack of a suitable comparison function had been a major

obstacle in the theory of value distribution.

L. Ahlfors and, independently, T. Shimizu (1921) gave an important ge-

ometrical interpretation of the characteristic function. The inverse function

z — f~l(w) has a Riemann surface S?. One can regard w asa point on the

Riemann sphere Wo and «5* as a covering surface of Wo ■ Let S(t) be the area

of 5? lying above the spherical cap {z : \z\ < t} of % . S(t) is calculated in

the Euclidean metric of Wo • Then

To(r,f)=l-[^du = T(r,f) + 0(\)
n J0     u

as r —> oo. Terms that remain bounded as r —> oo are of no importance in

Nevanlinna theory, so To(r, f) can be used in place of T(r, f). The convexity

properties of T mentioned above are geometrically evident for To .

By writing Jensen's Formula with / - a in place of /, it is easy to prove
the First Fundamental Theorem.

4. The First Fundamental Theorem

The First Fundamental Theorem (l.FMT). For all values a

m(r, a, f) + N(r, a, f) = T(r, f) + 0(\)

as r —> oo .

We look at f(z) = exp(z).

T(r, f) = m(r, oo, /)'

m(r, oo, /) = r/n

N(r,a,f)*r/n

(ae&, a¿0).

In this example the counting function N(r, a, f) is of the order of magni-

tude of T(r, f) for all complex a ^ 0, while for a = 0 or oo the proximity

function m(r, a, f) = T(r, f). This illustrates the dichotomy expressed by

the l.FMT: Either N(r, a, f) is large , in which case the function must have

many zeros in the disk {z : \z\ < r), or m(r, a, f) must be large. This is only

possible if f(z) is close to the value a on a substantial part of {z : \z\ = r}.

For all meromorphic functions N(r, a, f) preponderates for a vast majority
of a . This is shown by the Second Fundamental Theorem.
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5. The Second Fundamental Theorem

The Second Fundamental Theorem (2.FMT). Let f(z) be a nonconstant mero-

morphic function, and let a¡ (j = \ ,2, ... ,p, p > 2) be distinct values. Then

(b) (p-2 + o(l))T(r,f)<J2Ñ(r,aj,f)       (r -» oo)       ||.
i

The symbol \\ indicates that r must tend to oo, skipping a set of finite Lebesgues

measure, if f is of infinite order. Here N(r, a, f) is the counting function of

the a-points disregarding their multiplicity.

Picard's Theorem is an immediate consequence of the 2.FMT, since it shows

that /V cannot equal zero for three a. But the 2.FMT contains much more

precise information.

6. Defects and the Defect Relation

Replacing the term pT(r, f) on the left-hand side of (b) by the expression

Yfi(m(r > aj > /) + ^(r> ai > /)) ' we can rewrite (b) as

(*)J2{tn(r,aj,f) + [N(r,aJ,f)-Ñ(r,aj,f)]} + o(T(r,f)<2T(r,f)    ||.
i

We define the deficiency of a with respect to / as

¿(a,/) = liminf    y       '/',
r^oo      T(r,f)

and the ramification defect of a with respect to / as

C(a,/) = liminf^r'g^-^fl^.
r^oc T(r,j)

By (*), for any finite set A of values,

(c) 2>(fl,/) + e(fl,/)]<2.
a€A

We call a deficient with respect to / if ô(a, /) > 0 ; we call a ramified with

respect to / if e(a, f) > 0. We call a defective if it is either deficient or
ramified.

We call
Ki     r\    i- m(r,a,f)
A(a, f) = hm sup   ,1 '    /

r-»oo i \r , J )

the Valiron defect of a with respect to f.

It follows from (c) that the set of defective values is countable and that the
defect relation

(d) 5>(fl,/) + e(a,/)]<2

aS

holds.
S(a, f) - 1 for an omitted value and always 0 < S(a, f) < 1, by the

l.FMT. Also 0 < e(a, f) < 1. Picard's Theorem is therefore a simple con-
sequence of the defect relation.  But the notion of defect allows one to make
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much finer distinctions between the distributions of different values than was

possible prior to its introduction.

The defect relation is the only restriction on the deficiencies and ramification

defects of meromorphic functions. D. Drasin proved in a very ingenious, long,

and difficult paper (1977) the

Inverse Theorem of Nevanlinna Theory. Given a countable set of values {a,},

numbers Sj and €j subject to the restrictions 0 < Sj < 1, 0 < e,- < 1, and

Y,[ôj + €j] < 2, there is a meromorphic function f whose defective values are

the üj with S(Oj, f) = Sj, e(a¡, /) = e,.

A simpler proof of the theorem is due to A. Eremenko and M. L. Sodin

(1990).
The functions / used in the proof of the Inverse Theorem of Value Dis-

tribution are of infinite order. For functions of finite order, or just of finite

lower order, there are many restrictions on the deficiencies. Their investigation

is a big, and still not completely finished, chapter of Nevanlinna Theory. For
example,

Theorem [W. K. Hayman (1964)]. Let f be a meromorphic function of finite
lower order. If a > 1/3,  then J2   9 à(a, f)a < oo.

The defect relation is an inequality. Many papers have studied the nature of
the functions of finite order for which

(e) £á(a,/) = 2.

Theorem [D. Drasin (1974)]. If f(z) is a meromorphic function of order X < oo

for which (d) holds, then

(1) X is an integer multiple of 1/2 and X > 1 ;
(2) there are at most 2X deficient values;

(3) each deficient value is an asymptotic value '.

Actually, more can be said about the behavior of /. In a recent paper

Eremenko proves the full truth under a weaker hypothesis than (e).

R. Nevanlinna's proof of the 2.MFT was based on an estimate of

m(r, f'lf) ■ F. Nevanlinna gave a second proof by putting a distribution of
mass v on the Riemann sphere, lifting it to the Riemann surface of the inverse

function z = f~l(w) considered as a covering surface of the Riemann sphere

and integrating over the surface. The choice of v is motivated by a study of the

singularities of the function which maps the universal covering surface of the
sphere with punctures at p points onto one of the unit disk, the sphere, or the

plane. (By the uniformization theorem exactly one of these mappings exists.)

F. Nevanlinna's investigations inspired L. Ahlfors to build his famous theory

of covering surfaces. This theory leads to a theory of value distribution for a

large class of functions containing the meromorphic functions. J. Miles showed

(1969) that the 2.FMT in the form given above is actually a consequence of
Ahlfors's theory.

To conclude this section, I quote two theorems which show the striking con-
clusions that can be drawn from the FMTs.

1 The value a is asymptotic if there is a path T tending to infinity such that f(z) —> a as z

tends to infinity on V.
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Theorem [R. Nevanlinna (1939)]. Let f(z) and g(z) be two meromorphic func-

tions. If for five values of a [f(z) = a] *-* [g(z) = a], without regard to

multiplicity, then f(z) = g(z).

The five values of a of the theorem cannot be reduced to four, as is shown

by f(z) = exp(z), g(z) = exp(-z).

Theorem [J. Miles and J. Rossi (1992)]. Let f(z) be a transcendental entire

function satisfying the differential equation

yM+A/k-V + 1£BjyW = 0,

o

where the A and B are entire functions with orders ß(A) = 1/2, ß(B) < 1/2.
Then

.. logn(r, a, f)
lim sup-f-= oo

r_>oo logr

for all a £ W.

7. Borel directions, Julia lines, and lines of accumulation

The counting function N(r, a, f) depends only on the radial distribution
of the a-points. It is therefore surprising that Nevanlinna Theory is capable of

giving interesting information about the distribution of the arguments of the

a-points. The earliest results in this direction go back to the 1920s and are due

to E. Borel, G. Julia, and H. Milloux. The following notation and definitions
will be used:

A(ß,ti) = {z:ß<argz<ri};

for simplicity we write A(a) for A(a , a).

n(r, a, e ; f) is the number of zeros of / in A(a-e , a + e)(~){z : \z\ < r} .

Definition. A(a) is a Julia line if for every e > 0

n(r, a, e; \/(f-a)) ^ cc       (r -► oo)

for all a with at most two exceptions.

Definition. A(q) is a Borel line of order p(> 0) of the meromorphic function f
if for every e > 0

..           \ogn(r, a, e; l/(f-a))
hm sup -;-—-— = p

r^oo lOgr

for all a with at most two exceptions

Definition.  A(a) is a line of accumulation of f of order p if

lim       \og[n(r,a,e;f) + n(r,a,e; 1//)]

r-oo log r

Julia proved that every meromorphic function has a line of Julia. E. Borel

proved that every meromorphic function of positive finite order has a Borel
line.
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Example. F(z) = exp(z) has the negative and the positive imaginary axes as

Julia lines which are also Borel directions.

In general the set of Julia lines will be much more complicated. Functions

with T(r, f) - 0(log2 r) have no Julia lines. On the other hand, J. M. Anderson

and J. J. Clunie have shown that, given any closed set E of a on the unit

circle, one can construct a meromorphic function / whose set of Julia lines is

{A(a)\a£E}.
An important modern contribution to the theory of the angular distribution

of values of meromorphic functions is the work of Yang Lo and Zhang Guan-

Hou, the author of the book under review. This was pioneering work in more

ways than one, since the collaboration of the two mathematicians began while

they were working under very hard conditions on a pig farm, as "reeducation"

decreed by the Cultural Revolution. They literally risked their lives for their

research.

Yang and Zhang undertook a very thorough study of the relations between

the number of deficient values, the number of asymptotic values, and the con-

figuration of the Borel and Julia lines of functions of finite order. Here is an

example.

Theorem. Let f(z) be an entire function, 0 < X < oo. Let q be the number of

Borel directions of order X, and let p be the number of finite deficient values of

f. Then p < q/2. Also, if q < oo, p < 2X.

Interesting work in Yang-Zhang theory is due to Wu Sheng Jian [W2]:

Let f(z) be a meromorphic function of order X and lower order ß, 0 <
X < oo.

Theorem. Let ß < p < X. If f has p (1 < p < oo) deficient values other than

0 and oo, then any sector of opening larger than

max    — ,2n-Y^ arcsin

contains a line of accumulation of order > p.

Theorem. Let ß < p < X. If 5(a, f) > 0 for an a £ {o, oo} and if the plane

is divided into m (1 < m < oo) sectors Sj by the lines of accumulation of

order > p, then X < ^, where co is the minimum of the vertex angles of the
Sj.

Recently Sodin [S] published a potential theoretic method for the study of the

angular distribution of values. This method allows the proof of all the results

of Yang-Zhang theory under weaker hypotheses.

Another method is due to Barsegyan [Bl, B2]. It is based on the Ahlfors

theory of covering surfaces, and its results are not immediately comparable to
those of the other methods.

8. Asymptotic values

R. Nevanlinna conjectured that every finite deficient value is asymptotic. This

was disproved by counterexamples, first for meromorphic functions (Gol'dberg,

1954) and then for entire functions (Arakelian, 1966). But there are many cases

in which the conjecture can be proved. A striking example is the theorem by
Drasin quoted above.

S(aj,f)
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9. Further work

In 1973 A. Baernstein introduced a powerful new tool, the "Baernstein star

function"

T*(re!0,f) = sup^- f log\f(reie)\dd,
E   2n JE

where E ranges over all measurable subsets of Lebesgue measure 29 of the

interval [0, 2n).

This function is mentioned in Zhang's book but is not used. With its help

many proofs could have been simplified.

Methodologically the most important innovation due to the Nevanlinnas was

the systematic use of potential theory. The recent development of the theory

confirms that Nevanlinna Theory can be regarded as a branch of modern po-

tential theory.
Nevanlinna Theory is a special case of the study of holomorphic mappings

from one complex manifold to another. Much work is being done on this topic.

The first example was Ahlfors's theory of meromorphic curves (1941). Aside

from their intrinsic interest the modern investigations also lead to a deeper

understanding of the original Nevanlinna Theory. For example, the number

2 in the defect relation is derived as the Euler characteristic of the sphere in

Ahlfors's theory.
The new theories give an impressive general overview, but so far they have

not developed the wealth of detail that is offered by classical Nevanlinna Theory.

To claim that the modern theories supercede it is about as reasonable as saying,

"I do not read poetry anymore; I only read deconstructionist criticism." Zhang's

book deals with its topics in a competent, businesslike manner. It will not appeal

to a novice, but it contains useful information for the specialist, even if some

of it can now be done more simply.
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