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Let G be a group, let X be a subset of G, and let X~ ' be the set of inverses
of the elements of X. Then one says that X generates G if every element of

G can be expressed as a product of the elements in L = X U X~l. A finite

string of elements of L is termed an X-word; such an .if-word is termed a
relator if it takes on the value 1 in G, i.e., the result of multiplying its entries

is the identity element of G. One writes

G = (X;R)

if G is generated by X, if R is a set of relators, and if everything about G can

be deduced from this data and the fact that G is a group. Such a description

is termed a presentation of G ; it is termed a recursive presentation if X is a,

possibly infinite, countable set

X~{Xi,X2,...}

and R is a recursively enumerable subset of the set of all X-words; and it is

termed a finite presentation if both X and R are finite. A group is termed

recursively presentable if it has a recursive presentation; and it is termed finitely

presentable, or, as is more usual, finitely presented, if it has a finite presentation.

A recursive presentation (X ; R) (of a group G) is said to have a solvable word

problem if the set of all relators is a recursive subset of the set of all X-words.

It is possible for one recursive presentation of a group G to have a solvable

word problem and for another such recursive presentation not to have a solvable

word problem. However, all finite presentations of a finitely presented group

G either have a solvable word problem or none of them do; we express this

property of a finitely presented group G by simply saying that G has a solvable

word problem or an unsolvable word problem, as the case may be.

Finitely presented groups arise in many branches of mathematics, in partic-
ular in algebraic topology, and have been the subject of intensive study. One of

the primary concerns in this study has been the search for computable invari-
ants. In 1954 P. S. Novikov constructed a finitely presented group G with an

unsolvable word problem; thus, if (X; R) is a finite presentation of G, there is

no algorithm which determines whether or not any X-word takes the value 1

in the group G. The existence of a finitely presented group with an unsolvable

word problem led to a host of negative algorithmic results about finitely pre-

sented groups. Indeed, it is now known that almost all problems about finitely

presented groups, their subgroups, and their elements are algorithmically unde-

cidable. For example, Novikov's student Adian proved that there is no algo-

rithm which decides whether or not any finitely presented group is of order one
(the triviality problem), is abelian, is finite, is a group of matrices, and so on.
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It follows that there is no computable set of invariants which determines any

finitely presented group (up to isomorphism).

It turns out that these negative algorithmic results about finitely presented

groups are not isolated phenomena but accurately reflect their complexity. For,

in 1961, G. Higman proved the following remarkable theorem:

A finitely generated group is isomorphic to a subgroup of a finitely presented

group if and only if it is recursively presentable.

Although it is not apparent from the formulation above, it follows from

Higman's theorem that the complexity of any recursive function can be encoded

into the relators of a finitely presented group. This, for instance, leads to the

existence of a finitely presented group which contains an isomorphic copy of

every finitely presented group!

Despite the algorithmic intractability of finitely presented groups, there are

many classes of finitely presented groups that appear to be amenable to system-

atic study. The extraordinary developments in the study of fundamental groups

of three-dimensional manifolds attest to this assertion.

In the book under review, the authors introduce and study a strikingly new

class of groups, which they term automatic groups, opening up a completely

new world of infinite groups for exploration. Their very definition allows for

the actual computation of the product of two elements in a way that is akin

to, but simpler than, the multiplication of two integral matrices. This conjures

up the fascinating possibility that some of the exploration of these automatic

groups can be carried out by means of high-speed computers.

The actual definition of an automatic group depends on the notion oía. finite-

state automaton. Such finite-state automata and slight generalisations of them

provide the underpinnings of today's remarkably efficient word processors and

compilers. It suffices here, taking the notion of a finite-state automaton for

granted for the moment, to define an automatic group, a little imprecisely, as
follows. A group G, equipped with a finite set

L = {a\,... , a„)

of generators, which we assume for convenience to be closed under inversion,

is termed automatic if there exist « + 2 finite-state automata M, M= , M¡

(i - 1,...,«), such that:
(1) the input of M consists of all X-words, and its output is a set L(M) of

X-words whose values comprise all of G ;

(2) the input of the so-called equality checker M= is {(u,v)\u,ve L(M)} ,

and the output of M= consists of {(u, v) \ u, v e L(M), u =G v} , where the
notation u=gV expresses the fact that the words u and v are equal in G ;

(3) the input of the so-called multiplication checker Af, is the set {(u, v)\u,

v e L(M)}, and the output of M¡ consists of {(u, v)\u, v e L(M),
u =G va¡}.

In other words a group is automatic if there is a machine (i.e., a finite-state

automaton ) which provides a list of words representing its elements, a machine

which checks for equality, and a bunch of machines which check whether words

represent elements which differ by right multiplication by a generator. The exis-

tence of such machines turns out to be independent of the choice of the finite

set L of generators of G. These machines, together with a set of generators of
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an automatic group G, is termed an automatic structure for G.

It remains only to define a finite-state automaton. To this end, let L be a
finite set and let L* be the set of all words

w — a\ ■ ■ ■ an       (a¡ in L)

(including the empty word e), where each letter a¡ e L. The subsets of L*

are often referred to as languages over L. Then a finite-state automaton is a

quintuple

M = (S,Y,L,x,s0),

where

( 1 ) S is a finite set of states ;

(2) y is a subset of S, the set of yes states or accept states or final states;

(3) L is a finite set of letters;

(4) t is a function from S x L ^ S, the transition function ;

(5) So is an element of 5, the initial state or start state.

M can be thought of as a machine with a head that scans a tape, which

is in a vertical position and is fed into M. The tape is divided into a finite

number of squares. Each square has a letter printed on it. The top of the

tape is fed into M, which starts up in the initial state 5o • M reads the first

letter on the tape, the tape moves up so that the machine now scans the second

letter on the tape, whereupon the machine goes into a new state. This new

state is determined by the transition function x and the first letter scanned

by M. The process continues with each new state being determined by the

preceding state and the letter that was scanned while the machine was in that

state. When the last letter on the tape is read, the machine goes into a new state

and stops. If the last state is an accept state, then the string of letters on the

tape is accepted by M ; otherwise it is refected. The language of M is the set
L(M) of words accepted by M. The language L(M) of M can therefore be

described as follows. Given a word w — a\--a„ (a¡ € L), let io = ^o > and let
ti = t(í,_i , a¡)   (i = 1,...,«). Then

L(M) = {w=al---a„\t„ e Y}.

The languages recognized by finite-state automata are called regular languages.

These languages provide the basis for the definition of an automatic group.

The origins of automatic groups can be traced back to the work of Max
Dehn and, more importantly, to the recent work of Cannon. Cannon's work,

which is geometric in nature, can also be regarded as a precursor to work

of Gromov, in which he introduces and creates the theory of what he terms

word-hyperbolic groups. In contrast to automatic groups, the definition of word-

hyperbolic groups has a geometric flavor, and the groups lend themselves to
geometric analysis. Hyperbolic groups, like automatic groups, have generated a

great deal of activity and interest, revolutionising part of combinatorial group

theory. The relevance of word-hyperbolic groups to this discussion is due to the

fact that word-hyperbolic groups are automatic. They are probably considered,

by topologists, to be the most important class of automatic groups. One way

of defining word-hyperbolic groups is by means of the Cayley graph, which also

plays an important role in the study of automatic groups. The Cayley graph

T — T(G) = Tx(G) of a group G, relative to a set X of generators of G, is a
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directed graph with vertex set G and edges all triples (g, a, g a), where g eG,

a € L = X U X~ ' . The element g is termed the origin, h the terminus, and a

the label of the edge (g, a, h). The edges (g, a, ga) and (ga, a~l, g) are

referred to as inverses, and the origin and terminus of an edge are referred to as

its extremities. A sequence y of (not necessarily distinct) vertices go, ■■■ , gn

of T is termed a path of length « if either « = 0 or, in the case where « > 0,

if for each i = 0, ...,«- 1 either g¡ = g¡+i or there exists an edge whose

origin is gi and whose terminus is g¡+\. The element go is called the origin
and g„ the terminus of y, go and gn are referred to as the extremities of

y, and one says that y goes from g0 to g„ . An infinite sequence go, ■■■ of

vertices such that for each i > 0, either g¡ = gi+l or there is a directed edge

whose origin is g¡ and whose terminus is g¡+i is also sometimes referred to

as a path. As above, go is the origin of such a path. Since L is closed under

inverses, for each path that goes from g to « there is a corresponding path

that goes from « to g. Since L consists of a set of generators of G together

with their inverses , it follows that the Cayley graph is connected. If g and «

are vertices in a Cayley graph T, then the distance d(g, h) between them is

defined to be the minimum length of a path from g to « . This turns T into a

metric space. The vertices of F, i.e., the elements of G, are sometimes referred
to as points. A shortest path from g to « is termed a geodesic, and a triangle

in T is termed a geodesic triangle if its sides are geodesies. Gromov has defined

a geodesic triangle to be ô-thin if every point on one side of the triangle is no
further than ô from at least one point on one of the other two sides, i.e., each

side of the triangle is contained in a ¿-neighbourhood of the union of the other

two sides. The group G is then termed word-hyperbolic if there exists a ô such

that every geodesic triangle in T is ¿-thin. These word-hyperbolic groups can

be described rather differently by means of so-called isoperimetric inequalities.
To this end, suppose that (X ; R) is a presentation of the group G. We say that

a group F is free on X if it can be presented in the form F = (X ; ) (notice

that it has an empty set of relators). One can then think of G as the quotient of

the free group F on X by the smallest normal subgroup K of F containing

R: G = F/K. It turns out that every element in a free group can be expressed

uniquely as a reduced X-word, i.e., an X-word in which no consecutive pair of

letters are inverses. The number of letters involved is termed the length of the

X-word. One says that /: N -»• R is a Dehn function for this presentation of G
if it satisfies the following condition:

for any reduced word w in F which takes on the value 1 in G, there are

words n £ R, Pi £ F, and e, = ± 1 for i - I, ... , N such that

N

w = Y[pir?p~l in F and N < f(l(w)).
i=i

It is not hard to see that if the function /, above, can be chosen to be a polyno-
mial of degree d > 1, then there exists a Dehn function which is a polynomial

of the same degree d for every finite presentation of G. Thus the existence

of such a Dehn function is independent of the choice of finite presentation of

G. One then says that G satisfies a linear, quadratic, cubic, etc., isoperimet-
ric inequality if it has a finite presentation with a linear, quadratic, cubic, etc.,

Dehn function. In his fundamental paper on word-hyperbolic groups, Gromov
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proved the remarkable fact that a finitely presented group is word-hyperbolic if

and only if it satisfies a linear isoperimetric inequality. Word-hyperbolic groups
include all finite groups, all finitely generated free groups, cocompact groups of

isometries of «-dimensional hyperbolic space, various classes of small cancella-
tion groups, as well as the free product of any pair of hyperbolic groups. Thus

all of these groups are automatic. Somewhat surprisingly, the direct product of

two infinite hyperbolic groups is never hyperbolic, although the direct product

of two automatic groups is again automatic. So every finitely generated abelian

group is automatic. On the other hand, a finitely generated nilpotent group is

automatic if and only if it contains a subgroup of finite index which is abelian.

The very definition of an automatic group suggests that its structure is reason-

ably uncomplicated. This is manifested by the fact that automatic groups are

finitely presented, that they have a solvable word problem, and that they satisfy
a quadratic isoperimetric inequality. In addition to these properties, automatic

groups have a property akin to that used initially to define word-hyperbolic

groups. Indeed, if G is an automatic group which is generated by the finite

set X, then one thinks of an X-word w = b\ • • • b„ as a map from the set

of nonnegative integers 0, 1, ... into G by setting w(t) = b\ ■ ■ ■ bt (t < n),

w(t) = w (t > n), where w denotes the value in G of the word w. Two

X-words are called k-fellow travellers if for all t, d(u(t), v(t)) < k in Y.

Automatic groups can be characterized using this " k-fellow traveller" notion.

This then, and a great deal more, is what this book is about. It is the end

result of a preprint written by D. B. A. Epstein in 1987. This preprint, as well
as subsequent versions, was widely circulated and, like Gromov's paper, created

a great deal of interest and excitement. Parts of it were written by Holt and
Thurston. The book itself was written by Epstein. It is divided into two parts.

The first is an introduction to automatic groups, and the second is devoted to a

number of topics in the theory of automatic groups. Chapters 1 and 2 contain a

careful introduction to finite-state automata and regular languages, the definition

of an automatic group, and a discussion of ways of "improving" the automatic

structure of an automatic group. Some of the geometric aspects of the Cayley

graph are discussed in Chapter 3, followed by a discussion of some examples of

automatic groups in Chapter 4. Chapter 5 is devoted to obtaining a collection

of axioms, which refer to a finite number of finite-state automata, which are sat-

isfied if and only if these automata are the automata of some automatic group.

These axioms are all expressed in terms of regular predicates, and so they can

be checked algorithmically. This leads, in Chapter 6, to the description of a
method for finding an automatic structure of any given finitely presented group

which is an automatic group. The method depends on an implementation of

the Knuth-Bendix procedure and provides the basis for a collection of computer
programs—due to Epstein, Holt, and Sarah Rees—which actually finds an au-

tomatic structure of any given finitely presented group, provided it has one (of

a slightly restricted kind). These programs have been surprisingly effective in
a number of specific instances. Chapter 7 treats a generalisation of automatic
groups, asynchronously automatic groups ; and the first part is concluded with

Chapter 8, which deals with nilpotent groups. Part 2 begins with the proof that

the Braid group is automatic, while Chapter 10 involves "higher-dimensional,

isoperimetric inequalities" and the proof that most of the special, linear groups
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are not automatic. Chapter 11 deals with geometrically finite groups, and the

book concludes with the proof that significantly many of the fundamental groups

of three-dimensional manifolds are automatic.

As I said at the outset, this is a remarkable book, and I recommend it very

strongly to everyone who is interested in either group theory or topology, as

well as to computer scientists. The exposition is thorough, if a little uneven.

Some of the material is quite technical, requiring more than a little knowledge
of three-dimensional topology. A few of the arguments presented are harder to

understand than they need to be, and the inexperienced reader might well be
discouraged at times. Despite these very minor shortcomings, I would urge such

readers—indeed, all readers—to persevere. This is a very important piece of

work, which contains a lot of lovely mathematics and lots of important ideas.

It seems very likely to have a great impact on the way that we approach parts
of combinatorial group theory as well as on the way that we deal with the
burgeoning field of computational group theory.
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During the last two decades the theory of Lie superalgebras became an es-
tablished part of algebra; its maturity is demonstrated by important applica-

tions in physics as well as by numerous interesting questions in ring theory
which arose from studying Lie superalgebras and their universal enveloping al-

gebras. Much of the literature has been devoted to finite-dimensional Z2-graded

superalgebras. V.G. Kac's classification of simple Lie superalgebras [2] and

M. Scheunert's monograph [6] are among the most notable references. As in

the case of Lie algebras, the study of superalgebra representations is one of

the focal points; since representations of a superalgebra naturally correspond

to modules over its associative enveloping algebra ring-theoretic properties of

universal enveloping algebras take the center stage in the representation theory.

In some cases there is also a connection between identities holding in the en-

veloping algebra and representations of the Lie algebra (a similar link has also
been exploited in studying certain group algebras).

Following the success in using Z2 -graded Lie superalgebras to describe sym-

metries in quantum field theory, a natural generalization of the classical Lie

superalgebra structure was introduced and studied in several special cases (see

[7, 4, 5]).
Let L = ®g€GLg be an algebra over a commutative ring K with 1, graded

by an abelian group G, and let e : G x G —> K* be a bilinear and alternating


