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In solid state physics there exists a simple quantum mechanical model of crys-

talline matter, which is based on an approximation (the independent electron

approximation) described below. In this model the physical properties of a crys-
tal are to a large extent determined by its so-called Fermi surface. For instance,

physicists can predict from the shape of this surface whether the material will
act like a conductor, semiconductor, or an insulator.

I shall now first explain the notion of Fermi surface for arbitrary dimension.

Then I shall discuss its analog in the discrete setting of the book under review,

which deals with dimension two (the Fermi surface, a hypersurface in R3 gets

replaced by the Fermi curve, a hypersurface in R1). A detailed account of the

physical aspects can be found in [AM].

Suppose that one places rigid ions at the integral lattice Zrf c Rd . Suppose

in addition that there are electrons which move independently from each other

under the influence of a potential q(x) € L2(Rd), which is periodic with respect

to this lattice and which describes the potential energy of the entire system
consisting of ions and electrons. Quantum mechanics then tells you that the

probability of finding an electron at x is described by a complex wave function,
which can be written as a superposition of those eigenfunctions Nr'(x) of the

Schrödinger operator -A+q(x) that are quasi-periodic; i.e., for some k e (Rd)*
one has

x¥(x + y) = e^k^yi'(x),    \/yeZd.

In mathematical terms, fixing k, the crystal momentum, describes a selfadjoint
boundary value problem with discrete spectrum E\{k) < E2(k) < ••• . The

function Ej(k) is continuous and periodic in the lattice dual to Zd . The unit
hypercube Q serves as a fundamental domain for this lattice.

Suppose now that there are NL = Ldn electrons in L • Q c Rd where n,

the electron density, is independent of L e Z>o (the crystal size). By the

Pauli exclusion principle, valid for electrons (they are fermions), exactly two

electrons can be placed in one energy level (with opposite spin), so the lowest

energy level for the system of NL electrons in the box is realized when the

energies of these electrons are the first [NL/2] eigenvalues with highest value

El , say. Now, if we restrict attention to wave functions that are periodic with
respect to the lattice L • Zd , the values for k are restricted to ^ • iß c {Rd)* ;

and its seems quite likely (and in fact is true) that El tends to some finite limit

if L grows to infinity. This limit En only depends on the electron density and

is called the Fermi-energy. The locus in rc-space corresponding to states with

the Fermi-energy forms a hypersurface in (Rd)*, the Fermi-hypersurf ace. In the

physical three-dimensional world this gives the Fermi-surface, and its physical

meaning is that it separates occupied states from nonoccupied states at absolute
temperature zero.

In this model another experimentally observable quantity plays an important
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role, the (integrated) density of states function p(t). To compute it, one counts

the number of electrons of energy less than t per unit volume in the box L • Q

and takes the limit for L going to infinity.

One of the problems now is whether knowledge of "sufficiently many" Fermi-

hypersurfaces is enough to reconstruct the potential. Indeed, as noted before, in

the real world one can make several predictions about the crystal from measuring

the Fermi-surface alone. An even more challenging question is whether the

potential can be reconstructed from measuring the density of states function
for "enough" energy-levels.

Due to periodicity, the Fermi-hypersurface can be viewed as a hypersurface
of the d-torus (5'1)</ ; moreover, we can also define the hypersurfaces Ft c {Si)d

corresponding to any energy-level (el and collect them into a hypersurface
B{q) in (Sl)d xRl .

In general these varieties are hard to study, so one introduces a suitable
discrete model. In order to be able to apply better the methods of algebraic
geometry, one also works over the complex numbers, substituting (C*)d x C for

(Sl)d xRl and using complex-valued potentials q . Furthermore, one replaces

Rd by 1d and the ion lattice 1d by

d

r = 0z-¥)
;=i

where e¡ is the jth unit vector, and one assumes that the a¡ are distinct prime

numbers. One chooses a fundamental domain F for T. The vector space of

complex-valued T-periodic functions on 7Ld equipped with the inner product

(<P>V) =-— 51 <P(x)¥(x)
XÇ.F

is denoted by L2(Zd/T). Potentials q(x) are supposed to belong to this space.

To formulate the analogous spectral problem, one introduces the shift-operators
Sj which act on functions in L2(Zd /T) by

Sjf ixl.Xj, ... , X¿) = f(X\ , ... , Xj+i , ... , x¡¡).

Now, the discrete Laplacian is given by A = Y?j=\ Sj + Y?j=\ $Jl ■ This discrete

problem then translates into

M-A + q-t)y/ = 0       (teC)

\sajiy/ = ̂ yy K/eq, j = l,...,d,

and one introduces

B'q) = {(Í!, ... , Zd, t) € (C*)d x C | 3y ¿ 0,   y/ solves (*)}.

The fibres Ft over t e C are the complex analogs of the Fermi-hypersurface as

introduced before. In fact, for t equal to the Fermi-energy, the real hypersur-
face

<f>, = Sd n Ft
def

with Sd e (C*)d x {t} is the precise analog in the discrete setup.

It is not hard to see that B(q) is the zero-set of a polynomial P of degree

a\--ad in the variables {_/, Çfl, j = 1, ... , d and t, and so is algebraic. One
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can also show that the nonintegrated density of states function (the derivative

of p(t)) is the period integral

f{ 1)i§-tPdti-Ad7J/\--dzd

h, £\---£djzJP

Recall that <¡>t = FtV\ Sd is the real Fermi-hypersurface and that for t fixed

P(¿¡, t) = 0 defines Ft. Also note that the (d - l)-form over which one inte-

grates can be identified as the restriction of Ft of the global (d - l)-form a>

on (C*)d x C defined by

n*(dt)A(ú=^-A---A^-,
<=1 id

where n denotes the projection onto the complex i-line. So also the density of

states function can be identified canonically as a period integral over a naturally

defined regular (d - 1 )-form on F,, and one is in the position to apply algebraic

geometry.

In the book under review the two questions formulated previously are solved

for the discrete model and for "generic" real-valued potentials if d = 2, i.e., for

Fermi-curves. Amazingly, for such potentials it is true that the density of states

function-germ near a real point (but viewed as a holomorphic function) deter-

mines q up to some obvious ambiguities (changes of signs in the coordinates

and translations in the coordinates). This statement, in fact, is a conjunction

of two theorems: one, saying that for generic potentials q the total space B(q)
determines the potential up to the aforementioned ambiguities, the other stating

that for real-valued generic potentials the germ of the density of states function

near a real point determines B{q).

The first theorem (Theorem 4.4 on page 55) is much easier to prove than the

second one (Theorem 13.1 on page 222) but already involves some algebraic

geometry. The variety B(q) is closed up inside P2 x P1, and its singularities
as well as the singularities of all the compactified curves are carefully analysed;
after this analysis Theorem 4.4 follows quite painlessly. At this point I would

advise the reader to read first the argument used to prove Lemma 3.3, since the

same sort of reasoning is implicit in the proof of Theorem 4.4 and clarifies the

proof considerably.

The second theorem, however, involves some deep algebraic geometry

(Torelli's theorem for curves; see, e.g., [G-H] and Deligne's theorem on the

fixed part [De, 4.1.2]) and also a lot of detailed topological considerations re-

lated to deformation theory of isolated singularities. In fact, in order to study

the generic potential, the authors first make a detailed study of the potential
zero case and the case of separable potential, q(x) = qi(xi) + <72(.x2). Then
they investigate how the situation changes when you deform away from these

special cases; in particular, they make a careful study of the resulting vanishing

cycles and the monodromy action. This is the hardest part of the book and

comprises over two-thirds of it!

Among the potential readers one should certainly count the algebraic geome-

ter as well as the mathematical physicist working in solid state physics.

Indeed, the methods and theory borrow heavily from algebraic geometry; and

to motivate such a reader, the first chapter of the book is indispensable. I should,
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however, give a warning. The usual notions of "Fermi-energy" and "Fermi-

surface" as adopted by physicists are those I gave above, and these differ from
those given on page 5 in the book under review.

The topic, however, should attract the second kind of potential reader. Such

a reader, of course, is well acquainted with the notions of "Fermi-surface",

"density of states function", and the like. He or she probably knows very little

algebraic geometry. In order to bridge this gap the authors have included a
detailed description of what happens in the one-dimensional case where every-

thing is much simpler and explicitly calculable. In particular, one can view this

case as a toy model for the proof of Theorem 4.4. The calculations in the sub-

sequent sections have been carried out in great detail and have been illustrated
with many pictures and diagrams.

From Chapter 8 on, however, the authors are more demanding. For instance,

in Chapter 8 the notion of "vanishing cycle" is not fully explained; a small

computation showing that the intersection of a small ball about an ordinary

double point with a nearby fibre has the homotopy type of a circle would have

been helpful. Also, a reference could have been provided for the basic Picard-

Lefschetz formula, and some explanation could have been offered for the extra

factor of 2 in this formula when the total space acquires a node (page 166).

Later on (page 192) the reader is supposed to be familiar with the theory of

semiuniversal deformations, at least for double points of type A2 (hopefully the

reader understands that those are the cusp singularities treated in the preceding
lines). Finally, the two difficult theorems mentioned before are just referred

to; they are not stated, nor is it explained how these can be used to draw the

crucial conclusions on page 224 (proof of Proposition 13.1 and Proposition

13.2). This makes reading hard for novices in this matter and could have been

easily avoided. See for instance [P], where this last part is explained in more
detail.

From the preceding description of the contents it should be clear that the

book is a difficult and deep piece of mathematics entirely devoted to the proof

of two basic theorems. It is basically an expanded research article. Apart from

the few criticisms given, I found the book very readable. Anyone who wants to

see an intricate piece of highly nontrivial algebraic geometry applied to a crude
model of the "real world" should find it rewarding.
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