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1. Littlewood-Paley-Stein theory

The theory of function spaces appears at first to be a disconnected subject,

because of the variety of spaces and the different considerations involved in their

definitions. There are the Lebesgue spaces IP (defined by size); the Lipschitz

spaces Aa (smoothness); the Sobolev spaces Lpk , k e N (size and smoothness);

their generalizations, the fractional potential spaces LPa , a € R (defined via the

Fourier transform); the generalized Lipschitz spaces Apa'q (size and smooth-
ness in a mixed norm); the real-variable Hardy spaces Hp (boundary values of

generalized Cauchy-Riemann systems, nontangential maximal function, atomic

decomposition); and BMO (bounded mean oscillation).

Nevertheless, several approaches lead to a unified viewpoint on these spaces,

for example, approximation theory or interpolation theory. One of the most

successful approaches, and the one taken in Triebel's book, is Littlewood-Paley-

Stein (LPS) theory. This arose first in the 1930s in connection with Fourier

series and analytic functions on the unit disk (see [Z, Chapters 14 and 15]).
Its extension to Rn and beyond began with [St 1] in 1958. A good historical

account is [St3], while the key reference for over twenty years has been [St2],

much of which was updated in [St4].
The classical formulation of LPS theory on Rn is in terms of the Dirichlet

problem on R"+1 = {(x, t) : x e R" , t > 0} . For a boundary value function

/ e Lp(Rn), 1 < p < -foe, the various auxiliary Littlewood-Paley functions

¿?(/), gx(f), gi(f), S(f), and g'k(f) are formed using the harmonic ex-
tension Pt * f(x) (the solution to the Dirichlet problem), where Pt(x) is the
Poisson kernel. For example,

(1) gi(f)(x) =

To make a long story short, the following norm equivalences hold for 1 < p <

+00 :

(2) H/Hi, « ||*(/)||l, « \\gx(f)\\u> « UÁDWls « \\S(f)\\v « \\gl(f)\\v

(for k > 2/p in the case of g¿). This leads to some very precise results, such as
a local a.e. characterization of nontangential convergence ([St2, p. 206]). Thus

we can view (2) as an application of function spaces to the study of the Dirichlet
problem.

However, LPS theory as a subject in itself starts when we take the somewhat

perverse opposite view: (2) is an application of the Dirichlet problem to provide
alternate norms for use in studying IP . The idea of replacing the simple IP

norm by a complicated norm like ||£i(/)||l* , defined using the usual Lp norm

anyway, appears crazy and, in fact, horrified a colleague of mine. But certain

types of structure may be exhibited only via the alternate norm. A prototype

t§¡Pt*f(x)
2dtY*
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of such a case is Stein's proof [St2, p. 96] that a Fourier multiplier operator

Tm satisfying a Hörmander estimate actually satisfies the pointwise inequal-

ity g\(Tmf)(x) < cgl(f)(x) and hence is IP bounded by (2). Nowadays,
LPS techniques are commonplace; one interesting example among many is the

fractional derivative chain rule estimate in [CW].

The LPS square function S(f) played a key role in [BGS] and [FS], which
touched off the rapid development in the 1970s of the Hp(Rn) theory of Stein

and Weiss. Among other things, these papers show that the Hp spaces and BMO

have LPS characterizations (involving Carleson measures in the case of BMO).

Thus LPS theory provides one of the senses in which the spaces Hp -IP' — BMO

form a unified scale.

In another direction, around 1960, Besov systematically generalized the Lip-

schitz spaces. For example, for 0 < a < 1 and 1 < p, q < +oo, define the

Besov space Bspq (or AP'9) by the norm

(3) \\f\\BU = ||/Ik, + (_£ (\t\~S\\f(X + t) - f(x)\\u(dx))q |y£)

Taibleson [Ta] proved that Bspq also has an LPS characterization:

i/«

(4) ll/lk «||/||l,+

)q       \ 1/«

(Bspq should probably be called a Besov-Lipschitz-Taibleson space, except for

the resulting abbreviation.) If we take 5 — 0 and q = 2, (4) is similar to

lle?i(/)l|L* except for the order with which the Lp(Rn) and L2((0, oo), dt/t)
norms are taken. Since IP and Aa do not seem closely related, this is surpris-

ing. Here is a heuristic explanation of (4). We can write t-§-tPt*f(x) = cpt*f(x),

where cpt(x) = t~ncp(x/t), for a certain <p satisfying J q> = 0. Letting Sp be

the point mass at p, we can also write f(x + t) - f(x) = (J_t - So) * f(x) ;
and ô-t -So is like an Rn dilation of the mean-zero kernel Se - So, where

e = (-1, 0, ... , 0). The modern perspective, which explains many of the

equivalent characterizations of various function spaces, is that one mean-zero
kernel is generally as good as another.

The Besov spaces may appear quite technical, but they arise naturally in

many contexts. In boundary value partial differential equations, Bppl'p(R") is

the space obtained when one restricts Lp(Rn+l) to R" (if a > l/p). Besov

spaces often appear in sharp versions of Fourier multiplier theorems, e.g., in

[BS, Se], and Taibleson's characterization of Fourier multipliers bounded on

Aa [Ta]. The fractal dimension of a graph is characterized via Besov spaces in

[DeJ]. In statistics Donoho and Johnstone [DoJ] found the unit ball of a Besov

space more natural than the unit ball of a Sobolev space for minimax analysis
of estimators.

The parameter s in (3) reflects the action of a Bessel potential. It can be

incorporated similarly in (1) and (2) to give an LPS characterization of the
Sobolev and potential spaces. Thus the LPS approach describes all of the spaces
noted in the first paragraph, except for certain problem endpoint spaces like Ll
and L°°.
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2. The European school

So far our notation has been that of the Stein school. Another school devel-

oped in the 1960s and 1970s in Sweden, Eastern Europe, and the former Soviet

Union, which reached a similar unification of function space theory by a dif-

ferent path. Motivated probably by methods of Hörmander in studying partial

differential equations, they used a Fourier transform approach. Pick Schwartz

functions í> and cp on R" satisfying suppÔ ç {£: |<*| < 2}, supp^ C

{Ç: 1/2 < If| < 2}, and the nondegeneracy condition |ô(f)|, |0(f)| > c > 0
on slightly smaller regions. For j € Z, let cpj(x) = 2incp(2'x). Peetre proved

[PI] in 1967 that

(CO

Ç(2>'||^*/|U,)«

He also considered the homogeneous Besov spaces Bspq defined by the norm

(Zjez(2js\\<Pj*f\\is)9)l,g-
Independently, Triebel [Trl] and Lizorkin [L] introduced Fßq (the Triebel-

Lizorkin spaces), defined originally for I < p < +oo, 1 < q < +00 by the
norm

(6) \\f\\F'=\\**f\\l,+

and the homogeneous analogue Fpq with norm \\(J2jçZ(2js\ç>j<* f\)9)^9\\LP.

Motivated by Hp theory, especially [FS], Peetre extended these definitions to
0 < p , q < 1 (see [P2] for a nice account).

If we write <p, for tdPt/dt as above and note that J2J dt/t is independent

of j e Z, we see that (5) is analogous to (4) and (6) is analogous to ||£i(/)||l/> .

Then by the LPS results noted earlier and the expectation that different kernels

give the same results, the following equivalences seem natural: Lp « Fp2 « F°2

if 1 < p < +00 , H" « /¡°2 if 0 < p < 1, Lp&F°2 if a > 0 and 1 < p < +00,

and AQ « B^^ if a > 0. With a natural Carleson norm definition of F¿,q

(see [FJ]) we even have BMO « F^ • So the Besov and Triebel-Lizorkin
scales systematically incorporate the full range of spaces that are unified by LPS

theory. Although this was not the original motivation, we can regard (5) and

(6) as turning the LPS characterizations into the definitions of the spaces.

The European formulation has certain advantages. For example, the theory

of functions of exponential type can be applied to each cpj * f (since supp <f>¡

is compact). With this, the Sobolev embedding theorem can be given a very
simple proof and can even be sharpened within the Bspq and F^ scales (see

[Tr3, p. 129]). Many apparently distinct results for Hp , IP , Aa , etc., can be

shown to be essentially the same by giving them a single proof in the B and F

space notation. Beyond this, the European school has given rise to new insights
leading to new results, such as those in [Se]. Finally, the introduction of discrete

expressions can be seen as one step in the direction of modern wavelet theory.

'/</

1/?

<Pj*f\)«

it
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3. The connection with wavelets

A fundamental difficulty in using function space theory in Fourier analysis
is that for p ^ 2, IP is not characterized by the size of the Fourier transform

(L2 is so characterized, by Plancherel's theorem). This is nicely described by

C. Fefferman in his 1974 ICM lecture [F]:

Take a function f'x) ~ ¿Z-Z akeikx belonging to LP   (p < 2)

but not to L2 , and modify its Fourier series by writing g(x) ~

c with each ± sign picked independently by flip-£l~±a*e'**
ping a coin. Then with probability one, g does not belong

to IP (or even to L1) but is merely a distribution with nasty
singularities.

See [Z, Chapter 5] for these results,
end of his lecture:

Fefferman returns to this issue at the

Perhaps in dealing with the Fourier transform in R" , we must

abandon our fixation on Lebesgue measure and search for new

quantities (defined possibly in terms of coverings by thin rect-
angles) to express the size or importance of a set of points. This
is easier said than done.

For those of us looking for simpler projects, the alternative to changing the

function spaces is to change the transform. In fact, the wavelet transform does

match the standard function spaces in the desired sense. In 1985 Meyer [Ml]

constructed a Schwartz function y/ on R such that the set {Vjk}j,k€Z, where

Vjk(x) = 2j/2y/(2Jx - k), is an orthonormal basis for L2(R). The map / —*

{(/> Wjk)} is called the wavelet transform, which is inverted by the wavelet
identity

(7) /=  53 </, Vjk)Vjk-
j,k€Z

For  1 < p < +00,  LP  is precisely characterized by the magnitudes of the
wavelet coefficients:

(8) L*

1/2

Y&m\v, */*>i*p-*.2-/<k+i)])J
J,k

u>

There are similar characterizations of Hp , Aa, IPa, Apa>q , and BMO, and an

extension to n dimensions, in [M2]. In fact, the whole Besov and Triebel-
Lizorkin scales can be characterized this way, as in [FJW, Theorem 7.10].

By comparison to the Fourier case, (8) seems miraculous. But (7) and (8)
have their origin in LPS theory and an identity called the Calderón formula,

which goes back to [C] in 1964. One form of this identity is as follows. Let

ft - tdPi/dt as above, and pick y/ e S^(Rn) to be real and radial and to satisfy

¡Vf = 0 and /0°° w(tt])e-' dt = -1 for r\ = (1, 0, ... , 0). Then by Fourier
inversion we obtain

(9)
r°° r dt

f(x)= /     /   v,*f(y)y/,(x-y)dy —
JO      JE" l
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(see, e.g., [FJW, p. 4]). The European version, which goes way back also, is

similar: / = ¿Zjez<Pj * <Pj * f if £j€z(0;)2 = ! a.e. We regard cp, * f(y) as

the coefficient of y/t(x-y) in the continuous expansion (9), which is analogous

to (7) (especially since (/, y/jk) = /* y/j(2~Jk) for y/j(x) = V¡2y/(-Vx)).
Now by LPS theory, LP is characterized by the magnitude of cpt * f'y) via

\\g\ (f)\\v ä 11/ \\u> and similarly for the other spaces above. So (8) is analogous
to (2). This also helps us understand the right side of (8): it is the LP norm of

a discrete Littlewood-Paley expression for the sequence {(/, y/jk)} ■ (See [FJ]

for a systematic extension of this notion.) The fact that the equivalent norms

come down to pure size estimates is probably the main reason for the success

of LPS theory (cf. [CMS]).
For function space theorists, wavelet theory can be regarded as a particularly

simple and convenient formulation of LPS theory. Of course, for many applica-

tions of wavelets, especially in signal compression, the discrete nature of (7) and

(8) is essential. Also, the many other predecessors of wavelets in mathematics,

engineering, and physics should not be slighted. Still, one of the reasons for the
current excitement over wavelets is that the mathematically sophisticated LPS

theory has passed a certain threshold of simplicity in its wavelet formulation

that makes it accessible to a very general audience.

4. Triebel's book

Despite the title, Theory of function spaces II is Triebel's third major text
on function spaces. The other two are [Tr2] and [Tr3]. These were systematic

and thorough, and hence very useful as reference works, but were somewhat

technical. The new book is much more informal, readable, and intuitive. It

is more limited in scope: in the author's words (p. v), "However, those topics

where we have nothing new to say will not again be treated in detail; we shall

refer to [Tr3] or other relevant sources." The topics presented in the new book

are mainly of two types: first, those for which there is now a simpler approach

than in [Tr3]; second, those needed for the main new material in the book, the
generalization of the theory to Riemannian manifolds.

Chapter 1 and the rest of the book are independent of one another. Chap-

ter 1 is a self-contained expository introduction and historical survey, without
proofs, of the development of the subject. It is accessible and interesting to

nonspecialists as well as specialists. Triebel does a nice job of showing how all
the different approaches eventually led to the same set of function spaces.

The main program, with full proofs, starts in Chapter 2, which presents the

basic theory of the Besov and Triebel-Lizorkin spaces. The terminology is that

of the European school. The main new device for simplifying proofs, the atomic

decomposition, is discussed in Chapter 3. The key theorems on pointwise mul-
tipliers, diffeomorphisms, traces, and extensions are presented in Chapter 4.

In Chapter 5 function spaces on domains in R" are defined, originally by re-

striction from R" , but eventually by an equivalent intrinsic definition. Results

on the Bspq and F^g boundedness of pseudodifferential operators are given in

Chapter 6, with proofs based on the atomic decomposition.

The book concludes with Chapter 7, where the generalization of these func-

tion spaces to Riemannian manifolds (of positive injectivity radius and bounded

geometry) is given.  The original definition is based on patching together the
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definition inherited from local charts. The results of Chapter 4 are used to

show independence of the choice of charts. The main result gives an equivalent

intrinsically defined characterization.
Theory of function spaces II is a valuable and readable book. It is of interest

to anyone desiring a general overview of function space theory and especially

to someone wanting to consider the extension of this theory to Riemannian

manifolds.
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1. Introduction

The literature on interpolation theory is vast and rapidly growing vaster. Part

of this growth is due to the fact that the subject is genuinely rich and lends itself
to many different approaches and applications. Since 1989 alone, at least five

books have been published: Ball, Gohberg, and Rodman [BGR]; Bakonyi and
Constantinescu [BC]; Dubovoj, Fritzsche, and Kirstein [DFK]; Dym [Dl]; and

the present volume by Frazho and Foias [FF]. To this list one should add the
earlier monographs of Akhiezer [Ak], Katsnelson [Kl], Krein and Nudelman

[KN], and Rosenblum and Rovnyak [RR], which contain much relevant ma-

terial, plus hundreds of journal articles and conference reports and numerous

Ph.D. theses. The book under review focuses on the method of commutant

lifting which was introduced by Sarason [Sa] in 1967 to solve a pair of classical

interpolation problems for scalar-valued analytic functions in the disc. Shortly

thereafter, the basic lifting theorem was extended to an abstract operator set-

ting by Nagy and Foias [SNF1, SNF2]. This paved the way for applications to
interpolation problems for matrix- and operator-valued functions, and that is
what this book is largely about.

To say more, it is convenient to introduce some notation. The symbols C,

ED, T will denote the complex numbers, the open unit disc, and the unit circle,

as usual; Cpxg designates the set of p x q matrices with entries in C, and Cp
is short for Cpxi. Similarly, Lk(T) and //2*(T) alias Hk(B) will denote the

set of k x 1 vector-valued functions with entries in L2(T) and the Hardy space

H2(B), respectively, with inner product

{f,g) = ^j\(eieTf(eie)de.

Here and elsewhere, the superscript * denotes the Hermitian transpose of the
indicated vector function and the adjoint (with respect to the appropriate inner


