
142 BOOK REVIEWS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, Number 1, July 1994
©1994 American Mathematical Society
0273-0979/94 $1.00+ $.25 per page

Fundamentals of dynamical systems and bifurcation theory, by Milan Medved,
translated from Slovak by J. Hajnovicova and D. Halasova. Adam Hilger,

Bristol, Philadelphia, and New York, 1992, viii + 293 pp., $66.00. ISBN
0-7503-0150-3

Dynamical systems are currently one of the most popular scientific areas.

This is particularly true for the area of nonlinear dynamics, which very often

is more or less identified with chaos theory. Not only is the name chaos not
justified for any nonlinear phenomenon such as elementary bifurcations, but the
popularity of the subject also led to an avalanche of fuzzy publications with eye-

catching illustrations and speculative comments. Here, though, is a book which

is completely different: a rigorous mathematical treatment of the fundamentals
of differentiable dynamical systems and bifurcations, a systematic introduction
of basic terminology and mathematical theory presented in a general and rather
abstract framework with relatively few schematic figures included.

The theory of dynamical systems is closely related to the geometric or qual-
itative theory of differential equations which dates back to Poincaré [13]. This

theory studies the solutions from the point of view of the geometry of the corre-

sponding set of trajectories or orbits in phase space rather than of quantitative

features of single solutions. In particular, it provides a means to verify the relia-
bility of quantitative computations and computer simulations. An autonomous

first-order system of ordinary differential equations generates a continuous dy-
namical system on the corresponding state space, given by the flow map. The

flow map depends on the independent variable, say, time t, and assigns to each
initial state the solution at time t. Furthermore, a time-periodic first-order sys-
tem of ordinary differential equations is completely described by the discrete
dynamical system which is generated by the period-map on the state space. It-
erating the period-map gives the solutions at equally spaced instants of time
which differ by one period of the system. Analogously, a continuous system

near a periodic orbit can be described by a discrete system. Here the generating
diffeomorphism is the first return map or Poincaré map corresponding to some
transversal section of the periodic orbit.

A key feature of the mathematical theory of dynamical systems is to ensure

some kind of robustness or structural stability of qualitative properties of the
trajectories when the system is perturbed slightly. This is important, because in
applications, model equations always involve approximations of certain quanti-

ties. Of course, such a concept depends on the kind of perturbations which are
taken into account and requires some notion of equivalence of orbit structures,
either locally or globally. Usually, one considers spaces of Ck -vector fields and
C*-diffeomorphisms equipped with a Whitney type C*-topology, k > 1. An

appropriate equivalence relation is orbital topological equivalence. According

to this, two systems are equivalent in a region of their phase space if there ex-

ists a homeomorphism which maps orbits of one onto orbits of the other one

and preserves the direction of the orbits. Having such a notion of equivalence,

one is also interested in a classification of the corresponding equivalence classes
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according to the geometry of the orbit structure. In fact, for structurally sta-

ble Ck -systems on smooth, orientable, compact manifolds of dimension two,

the equivalence classes can be completely classified. Moreover, these systems

are open and dense in the space of all C^-systems; i.e., structural stability is a

generic property here. These results were proven by M. M. Peixoto [12]; how-

ever, on higher dimensional manifolds the structurally stable systems are not

dense (cf. Smale [14]). So in general it does not make sense to restrict the study

and classification of the dynamics just to structurally stable systems. Rather,
it is natural to consider so-called generic properties. A property is said to be
generic if and only if it is satisfied by all systems of a given class which belong to

a residual or, as called in the present book, massive subset. Note that spaces of
Ck -vector fields and Cfc-diffeomorphisms are Baire spaces with respect to the

Whitney topology. Hence, countable intersections of open and dense subsets are

still dense. Subsets given by this kind of an intersection are called residual. A

famous example is provided by the Kupka-Smale systems on smooth manifolds

(Smale [15]). It is to be noted, though, that even from the generic point of view
a geometric classification of the global behaviour of dynamical trajectories in
a dimension greater than or equal to three seems to be hopeless in view of the

complex structures which are possible (chaotic behaviour).

On the other hand, locally, structural stability is generic, and one has a com-
plete generic classification of both continuous and discrete finite-dimensional

systems based on the flow box theorem and the Hartman-Grobman theorem.

The former says that away from any equilibrium or periodic point trajectories
are parallel in the topological sense. The latter says that near a hyperbolic equi-

librium or periodic point a dynamical system is orbitally topologically equiv-

alent to a simple linear system, called the normal form. As a matter of fact,

there is even a generalization of this local normal form to the nonhyperbolic,

i.e., nongeneric case (cf. Palmer [11], Sositaisvili [16]) based on the center-
manifold theorem. This generalization is also called the principle of reduction
onto the centre manifold, since the resulting normal form is linear outside the

center manifold. In addition, normal form techniques of Birkhoff [2], Elphick

et al. [4], Takens [17], and others provide a means to achieve the most conve-

nient form of the nonlinear part in order to analyze the local structure of the

trajectories. By means of Poincaré maps, the local theory also carries over to
neighborhoods of periodic orbits in case of continuous systems.

Let us now consider parameterized families of dynamical systems. These are

the objects which are studied in bifurcation theory. Bifurcations are changes of

the topological structure of trajectories when the parameter is changed. Bifur-

cation points are points in the parameter space at which such changes occur. Of

course, at such points the system cannot be structurally stable. In fact, properties

which are nongeneric for single systems can occur generically for certain parame-
ter values in families of systems. However, just as in the case of single systems,

in general, global structural stability with respect to any reasonable topology

and equivalence relation is not a generic property here either. As far as a lo-

cal generic theory of bifurcations is concerned, R. Thorn's "catastrophe theory"

[18] is a cornerstone. He classified singularities, i.e., critical points of smooth
potential functions depending on parameters (or rather germs of such functions)

and constructed normal forms (universal unfoldings). This amounts to study-

ing bifurcation of equilibrium points of gradient systems.   Later, Golubitsky
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and Schaeffer [6, 7] extended this theory on the basis of a different equivalence

relation including a distinguished parameter—namely, contact equivalence—to

more general systems and, in particular, to systems with symmetries. Also, they
used the Liapunov-Schmidt method to include the consideration of periodic

orbits (Hopf bifurcation). In the present book, the theory of local bifurcations

near equilibrium points or periodic points is based on generic properties and
normal forms for the linearized system, i.e., for parameter-dependent matrices

(cf. Arnold [1]). Moreover, nondegeneracy for the nonlinear terms is assumed

in order to prove normal form, bifurcation, and dynamical stability results.

This point of view is rather common in the literature (cf. Chow and Hale [3],

Guckenheimer and Holmes [8]). The hope is to obtain a generic classification
of the local bifurcations in this way. However, up to now a complete generic
classification has been worked out only for one-parameter families of systems.
In this case, only bifurcation from simple real or complex conjugate eigenvalues

is generic. For multiparameter systems just partial results are known. One of

the most far-reaching ones is the Takens-Bogdanov theorem for two-parameter

systems.

The book under review is concerned with the generic theory of dynamics

and bifurcations as outlined above. The frame in which this theory is presented

is general differentiable dynamical systems on finite-dimensional smooth mani-

folds. Both discrete and continuous systems are considered simultaneously, with

a few exceptions such as the center manifold theory. The latter is developed

only for a particular class of local vector fields.

The author really starts from scratch. The first chapter is a compendium

of basic notation and material from algebra, topology, mathematical analysis,

and differential equations, mostly without proofs but with abundant references.

Next follows a slightly more discursive account of the basics of differential

topology. It was through the generic theory that ideas and concepts from dif-

ferential topology were introduced into the subject of dynamical systems and

bifurcations. Credit for this should be given to Smale and Thorn, among oth-

ers. In particular, the important concept of "transversality" is discussed in the

book. Also, a valuable section on stratification of algebraic and semialgebraic

varieties is included. Stratification theory is not easily available elsewhere in

dynamical systems literature. It is needed in a section on generic properties of
parameter-dependent matrices, which is presented in great detail. Notice that

stratification theory has also been used recently in connection with the method

of orbit space reduction in equivariant bifurcation theory (see Field [5], Menck

[10]). This is not an issue in the book, since equivariant bifurcation problems
are not generic in the general sense.

The heart of this book is three chapters on vector fields and dynamical sys-

tems, invariant manifolds, and generic bifurcation of vector fields and diffeo-
morphisms, respectively. These contain a lot of very careful analysis. Proofs

of various basic assertions of the local theory are worked out in full detail.

For proofs of the more sophisticated parts such as Ck -smoothness of center

manifolds, k > 1 (cf. also [9]), or the Neimark-Sacker theorem on bifurcation

of closed invariant curves for diffeomorphisms, the reader is referred to the

literature. Also, several historical remarks are added. Interestingly enough, ref-

erences to the literature cover contributions from Eastern Europe, the former

Soviet Union, as well as the West. The book ends with some notes on global
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and chaotic dynamics, including the Smale horseshoe, Silnikov bifurcation, and

attractors of Lorenz type.

As already pointed out, the approach of the book is very formal. It requires

familiarity with the language of set theory. The book contains an abundance of

formal definitions followed by precise statements of the results, while there is

a shortage of illustrations and instructive examples. Therefore, it seems to be

unlikely that it will be attractive to researchers outside mathematics who need

to solve practical problems of a dynamical character, i.e., to those to whom it

claims to be directed, other than graduate students in mathematics. Also, it

is hard to imagine that this is a text by which the field of dynamical systems

could be approached unprepared. After all, the English translation from Slovak,

while good, is not perfect. For example, some mishandling of the definite and

indefinite article does lead to genuine ambiguity over uniqueness in places. In

any case, it is good for the subject that there are authors who care about thorough
and reliable mathematical foundations.
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This volume should be considered in conjunction with the author's preceding

book [8]; they form a natural pair. There is even a formal connection: pages

487-488 of Topological rings consist of errata for Topological fields. Topological

fields has not been reviewed by this Bulletin. For the reader's possible conve-
nience, here are two reviews: 90i: 12012 in MR and vol. 683, 12014 in the
Zentralblatt.

I salute the author for publishing a total of 563+498 = 1061 pages of sound,
scholarly exposition within a four-year period.

The thesis [ 1 ] of van Dantzig marked the birth of topological rings as a new

discipline. From the start there was a virtually complete dichotomy between

the connected and totally disconnected cases. If R is a topological ring, the
connected component / of 0 forms a closed two-sided ideal, and thus we have

three things to study: the connected ring /, the totally disconnected ring Rjl,
and the extension problem that arises.

The connected case is a vast field including, for instance, all Banach algebras.

Indeed, the five examples (pp. 3-4) of topological rings presented at the begin-

ning of the book are all Banach algebras. Nevertheless, Banach algebras have a

very low profile in the book and do not even appear in the index. It is the totally

disconnected case that dominates. The major motivating example is the ring of

/?-adic integers, along with its quotient field. The first of these is a compact ring,

the second a locally compact field. Van Dantzig [1] initiated the study of locally
compact division rings. The connected case was fully treated by Pontrjagin [4]

and given high visibility in his well-known book [5]. Jacobson treated the to-

tally disconnected case definitively in [2] and, in collaboration with Taussky [3],

gave a big push to the general theory of locally compact rings by fully exploiting

the structure of locally compact abelian groups. About thirty years later the

subject reached a climax when Skornjakov [6] exhibited "wild" simple locally

compact rings. An indication of the publication explosion in mathematics is
that in Small's collection [7] there is a whole section (no. 29.01, pp. 847-854)

on locally compact rings and modules, comprising thirty-eight papers, and that
brings us up to only 1979.


