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Introduction

This book is about diagonals and complements of diagonals together with

their pervasive role in several branches of mathematics. Some of these mathe-

matical areas include (1) algebraic functions, (2) complexity of algorithms, (3)

knot theory, (4) topology of spaces of real functions without complicated sin-

gularities, and (5) classical homotopy theory. The spirit of the methods in this
book has origins in the work of Arnold Shapiro, Wu Wen-Tsiin, and Minoru

Nakaoka, to name a few. Perhaps the main unifying point here is that useful

and interesting consequences in the above subjects arise through an analysis of
the complements of diagonals viewed through the eyes of cohomology groups.

A few highlights of this book together with an attempt to explain some interre-

lations are given in this review. Several additions and corrections are included.

The wr-example of the principle of removing diagonals in algebraic topology

is given by the classical Borsuk-Ulam theorem. Let the «-sphere, Sn , denote

the set of points in Euclidean space Rn+l of norm exactly one. If x is a point

in S" , then -x denotes the result of applying the antipodal map to the point

x . A statement of the Borsuk-Ulam theorem is as follows:

If h is any continuous function from S" to R", then there exists a point x
in Sn such that h(x) = h(-x) where x, of course, depends on h.

A classical method of proof for this theorem is given below, as the method

provides a guide to a major point of view in this book. Let X(n) denote the

product R" x Rn with the diagonal removed. There is a continuous function

from the «-sphere to the product space Rn x R" obtained by sending x to

the ordered pair (h(x), h(-x)). If the conclusion of the Borsuk-Ulam theorem

were false, then this function H takes values in the complement of the diagonal
X(n).

Furthermore, the function H is equivariant in the sense that H(-x) =

(h(-x), h(x)) - oH(x) where a permutes the coordinates of X(n). Thus

there is an induced continuous function from the quotient of the «-sphere

by the action of Z/2Z to the quotient of X(n) by the analogous action of

Z/2Z . The source space is homotopy equivalent to the real projective space of

dimension «. The target space is homotopy equivalent to the real projective

space of dimension (« - 1). Thus a contradiction to the existence of H is

obtained by inspecting its behavior in cohomology after "quotienting" by the

natural action of the group of order two. The analysis of the complement of

the diagonal together with the cohomology algebras of real projective spaces is
the fuel which runs this theorem.

One might regard the above proof as instructive in at least two ways. The first

way is that cohomology classes are obtained by quotienting out by the action

of a group on a subspace of a product space where the group used above is
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Z/2Z . The analysis of these cohomology classes arises from the behavior of
the complement of the diagonal in the product space. The second way is that
useful information may be obtained for /c-fold products with k > 2.

The subspace of a k-iold product space Yk with all of the diagonals removed

is an analogue of the case above where k = 2 and also occurs ubiquitously

in this book. This last construction is known to topologists as the (ordered)

configuration space of k-tuples of distinct points in the space Y ; see [FN]. The

unordered configuration space is then the quotient by the symmetric group on
k letters acting by permuting coordinates. One particularly striking example
of the configuration space occurs when Y is the plane R2 . In this case, the

unordered configuration space of ^-tuples of distinct points in the plane has

fundamental group which is isomorphic to Artin's braid group on k strings,

Bk [FxN]. Furthermore, this space has trivial higher homotopy groups and is

thus an Eilenberg-MacLane space of type K(Bk , 1) [FN]. The next two sections

provide beautiful applications of this K(Bic, 1).

2. Algebraic functions

One of the subjects treated in this book arises from V. I. Arnol'd's study
of entire complex functions [Al, A2, A3]. Consider the space B(n) of all

monic complex polynomials p(z) = zn + an-\zn~x + a„-2z"~2 + ••■ + ao of

degree « which have no multiple roots. By identifying each such polynomial

with its set of roots, one has that B(n) is given by the space of unordered «-

tuples of distinct points in the complex numbers C. Thus B(n) is precisely the

configuration space of unordered «-tuples of distinct points in the plane and is

a K(Bn,\).

Next fix a polynomial p(z) as above, and assume that each of the a¡ 's are

themselves complex polynomials in k variables. Given such a polynomial,
Arnol'd defines a function 6 from C* to Sym(C, «) where this last space is

the «-fold symmetric product, the «-fold product modulo the action of the
symmetric group on « letters Z„ . Namely, for each A>tuple of complex num-

bers, there is a polynomial of degree « which is obtained by substituting these
k complex numbers in the polynomial coefficients a, of p(z). The resulting

function is a polynomial in one variable of degree « and thus has « roots. The
value of the algebraic function which Arnol'd defines, 6(p), at the fc-tuple is
then the unordered «-tuple of roots given above.

Let D denote the subspace of Sym(C, «) which contains all diagonals, and

assume that 6 takes on some value outside of D. Let G denote the comple-

ment of the inverse image of D, 8~l(D). Thus G is an open complement

of an algebraic hypersurface in Ck . Arnol'd's map is the restriction of 6 to
a function A(p) : Ck - G -> Sym(C, «) - D. Observe that Sym(C, «) - D is
precisely the space B(n) and that it can be regarded as a classifying space for

these complex algebraic functions. Hence there are characteristic classes asso-
ciated to p given by pulling back the classes from the cohomology of the braid
group.

One application of Arnol'd's construction of the function A(p) is that certain

entire algebraic functions are not given by superpositions of algebraic functions
and polynomial functions in fewer variables. Namely, Arnol'd constructs spe-
cific algebraic functions p(z) which "carry" non-vanishing cohomology classes

by determining the maps A(p) in cohomology (on certain classes in degrees one
less than a power of two). He also proves that if p(z) is decomposable by su-



260 BOOK REVIEWS

perpositions of functions in fewer variables, then these "characteristic classes"
must vanish in the cohomology of Ck - G, the complement of a complex
hypersurface. Thus these particular functions which Arnol'd constructs are in-

decomposable.
This beautiful method, although more technical to work out, is analogous to

that of the classical Borsuk-Ulam theorem in which A(p) is the analogue of
the map H given in Section 1. The main point is that the cohomology of the

complement of certain diagonals is known together with their values or "charac-
teristic classes" for the complex algebraic function under consideration above.

Subsequently, more general results on the indecomposability of these complex

algebraic functions were given in papers of [L]. A closely related application is

presented next.

3. Complexity of algorithms

Smale used the cohomology of the space B(n), the space of monic com-
plex polynomials of degree « with no multiple roots, to study the topological

complexity of algorithms for finding approximations to the zeroes of a complex

polynomial [Sm]. These results are described and extended in the book under
review.

Consider the topological space D(n) of all complex, monic polynomials of

degree « with all coefficients of norm bounded above by one. Fix a positive

number s. Smale poses problems concerning algorithms P(n, e) of determin-
ing all of the roots of polynomials in D(n) to within e . Vassiliev poses an

analogous question, P'(n, e), of determining one root to within e . To study

this question, Smale defined the topological complexity of algorithms for such
problems t(«) ; this measure is described in a crude way below.

An algorithm is a finite oriented tree with four types of nodes given as follows:
(1) a unique input node which accepts 2« real numbers regarded as the real

and imaginary parts of « complex numbers of norm bounded above by one;

(2) computing nodes where, at each such node, certain real rational functions

are computed from the input values together with values of similar functions

evaluated at other computing nodes which occur before the one given in the
algorithm;

(3) branching nodes where the value of one of the previously computed ratio-

nal functions is compared to zero. Depending on whether their value is positive

or negative, the control is then passed to one of two edges coming out of this
node; and

(4) output nodes where, at each of these, the values of certain real rational

functions in 2« variables occurring earlier in the algorithm are declared to give
the roots of a polynomial, and the program terminates.

An algorithm is defined to solve the problem P(n, e) if for any polynomial

q(z) in D(n), (i) the corresponding execution path does not entail division by

zero and (ii) there is an ordering of the roots of each polynomial q(z) in D(n)

and the approximations for the roots in step (4) such that the norm of the differ-

ences of the i th root and its /'th approximation is less than e. The "topological
complexity of an algorithm" is defined to be the number of branching nodes in
it. The topological complexity of a problem P(n, e), denoted x(n, e), is the

minimal topological complexity of algorithms which solve this problem. Define
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x(n) = lim t(«, e). There is an analogue t'(«, e) for Vassiliev's generaliza-
e—»0+

tion. Smale proved
T(«)>(l0g2«)2/3,

while Vassiliev improved this by a modification of the methods to

« - 1 > t(«) > « - minDp(n)

where the minimum is taken over primes p  and Dp(n)  is the sum of the

coefficients in the p-adic expansion of « .

The method of proof here is essentially an estimate of lengths of cup products
in the cohomology of the complement of certain diagonals in a product space.
Various generalizations to functions of several variables are also given.

4. Cohomology of knot spaces

Vassiliev also constructs invariants of knots which have stimulated attention,
because these invariants contain the information given by the Jones polynomial

as a special case. One survey is given in [BL].

These invariants are constructed as follows: Consider the space K of all

smooth maps from S1 to S3. Let the discriminant X denote the subspace of
K given by maps with singularities or self-intersections. The main goal of this
section is to obtain information about the zeroeth rational cohomology group

of K - X, a group which distinguishes knot types.

First, Vassiliev gives finite-dimensional approximations to the knot space

K - X. Consider the space of ordered triples of real, monic polynomials of

degree d+\ with leading coefficient one, f (d). Embed F(d) in F(w(d+l)-l)

for w > 0. Indeed Vassiliev specifically uses w = 3. A small move of f (d)

in F(3d + 2) leaves a new space F(d) which is in general position with respect

to the discriminant locus X n f (3d + 2). The finite approximation for the knot
space is then given by F(d) - X. Thus the next step is to analyze the reduced

cohomology of these finite approximations to the knot space.
A second reduction is achieved by applying Alexander duality to F(d), a

method previously exploited in related problems [F, Se, BG]. Vassiliev then

analyzes part of his spectral sequence which abuts the homology of F(d) - X.

In addition to giving algorithms for computing these invariants together with
their values, he gives other fascinating information about the cohomology of
the knot space.

The invariants constructed in this chapter concerning knots have attracted

much attention, and some of the points raised represent continuing work in

progress. There are several programs in place to study the cohomology of these
knot spaces, and the work given in this book is still very much in the process

of development. Thus this review provides the briefest of sketches for this
important subject.

There is a principle here; namely, various flavors of configuration spaces
provide homological approximations for certain useful spaces. The spectral

sequence here is an analogue of the Anderson spectral sequence (dating back to
the 1970s) which is discussed in the next section.

5. A PARTIAL SYNTHESIS

The algebraic invariants used above arise from the cohomology of both the
braid groups and configuration spaces. They also appear in a wider, more nat-
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ural setting through function spaces and have classical origins.
Consider the work of Shapiro [S] and Wu Wen-Tsün [W] in which they devel-

oped characteristic classes for embeddings of manifolds by considering product
spaces with their diagonals removed. Inspection of their methods of course

gives information about entire spaces of embeddings, although most of their
work was focused on particular choices of embeddings. Write Emb(5', T) for
the possibly empty space of continuous embeddings of S into T. There is

a map Emb(.S, T) x C(S, k) -* C(T, k) obtained by evaluating an embed-
ding at a point in C(S, k), the configuration space of ordered ^-tuples of dis-
tinct points in S. Pull back cohomology classes from C(T, k) to the product

Emb(5, T) x C(S, k), and evaluate them against a choice of class in the coho-

mology of C(S, k) via a slant product. One then has a class in the cohomology

of the space of embeddings. These invariants are non-trivial. Furthermore, they
arise in the context of graded Lie algebras. Consider the example of the space
of ordered embeddings of a discrete set with k points in Euclidean «-space.

The cohomology of this space was worked out for « = 2 in [Al] and for any «

in [Cl]. The result is that the cohomology is generated by classes A(i, j) for

1 < j < i < « of dimension (« - 1). The relations are given by commutativ-

ity, associativity, and two others: (1) the square of A(i, j) is zero and (2) the
(three-term) relation A(i, j)A(i, k) - A(j, k)A(i, k) + A(j, k)A(i, j) = 0. It
was proven in [C] that these last two relations correspond, in a precise way, to

(3) the anti-symmetry law and (4) the Jacobi identity in a graded Lie algebra.

Indeed, the cohomology of the space of ordered embeddings can be identified
with a stratification of the symmetric algebra generated by a graded free Lie
algebra through the lens of the classical Poincaré-Birkhoff-Witt theorem [Cl,
C2, CT].

This story continues. Here let map*(S, T) denote the space of continuous

functions f such that f(so) = to for a choice of fixed base points Sq in S and

t0 in T. Thus if S1 were S" , the space map *(S, T) would be the «-fold loop
space of T and would be written as Q" T. One good feature of the «-fold

loop space is that, with mild restrictions, its homotopy groups are isomorphic
to those of T with a degree shift.

These types of function spaces are frequently built up out of spaces like con-

figuration spaces in a rather natural way. Consider the space of all functions of

finite subsets of R" to X-fpoint}. If X is a path-connected space satisfying
certain mild topological restrictions, May proved that there is a map from this

configuration space construction to the «-fold loop space of the «-fold suspen-
sion on X which induces an isomorphism in homology or homotopy [Ma]. As

does Segal, one might regard the above construction as a configuration space of
points in Rn with labels in X [Sel].

Another basic example is a theorem of Segal regarding spaces of rational

functions [Se2]. Let Rat9(C/"!) denote the space of ordered (« + l)-tuples of

polynomials over C which are monic, of degree q, and do not vanish simul-

taneously. (Equivalently, Ratg(CP") is a space of unimodular rows.) Segal's

result gives that these spaces are homotopy equivalent, through a range, to the
space of all pointed continuous maps from the 2-sphere to the (2« + l)-sphere,

Q.2S2n+l. These spaces of rational functions fit together, and thus there is a
limiting space of rational functions which, by Segal's theorem, is homotopy

equivalent to Q252n+1.   The stable homotopy type of the spaces of rational
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functions was worked out in [CCMM], where their cohomology was also given;

these cohomology groups are given in terms ofthat of the braid groups or B(n).
Some similar results are given in [K].

What about the cohomology of map (S, T) for more general spaces S ? Don
Anderson gave a spectral sequence abutting the cohomology of this function

space as long as S is a manifold of dimension at most the connectivity of the

target T [An]. Of course, that 5 is a manifold is not a significant restriction,

as any finite complex has the homotopy type of a regular neighborhood of an

embedding in a large Euclidean space. The E2 term of Anderson's spectral

sequence is given in terms of the cohomology of the configuration space of

points in S with labels in T. Anderson left research mathematics without

publishing the details of his spectral sequence; a complete proof together with

other information is given in the paper [BG]. Applications and features of this

spectral sequence had already been recognized in the late 1970s in connection
with Gelfand-Fuks cohomology and other subjects [CT]. Related constructions

and results are given in [B, Mc].

Vassiliev also constructs this spectral sequence with several variations in this

book where the "picture" is carried further. He reproves results in [CCMM]

and [Se2] with these methods. A related example is given by Vassiliev's space

of complements for discriminants of isolated singularities of holomorphic func-
tions in « complex variables. These spaces again fit together, and there is a
stable "limit" version. A similar spectral sequence argument for these stable

analogues gives that their cohomology is that of the 2«-fold loop of S2n+l. Yet

another analogue is given by the stabilized version of "complements of caustics

of holomorphic functions in « complex variables"; the resulting cohomology

ring is isomorphic to that of the 2«-fold loop space of the 2n-th suspension of
the Grassmannian U(n)/0(n). Another very interesting new example is given

by the cohomology of spaces of real polynomials without multiple roots.

The homology of these types of function spaces naturally breaks apart into

direct summands which themselves correspond to the associated graded mod-

ules obtained by filtering configurations by numbers of points. The resulting
answers are given in terms of classical group (co)-homology. One can "read off'

the homology of the braid groups, certain groups which are related to mapping

class groups, or the homology of unordered configuration spaces directly from

the homology of the iterated loop space of a sphere. Similar remarks apply

to some ordered configuration spaces and explain the connection between their

cohomology, a free Lie algebra, and Whitehead products in classical homotopy

theory [BCT, BCM, Cl, C2, C3]. Thus a fruitful point of view is that var-
ious function spaces provide a coherent and uniform picture of the types of

invariants encountered in this book and in earlier work on these subjects.

Vassiliev's stimulating book does an admirable job of "stirring up the pot",

throwing in new ideas, and giving interesting results. This book is worthwhile
from many points of view.

6. Some corrections and additions

1. The cohomology of the braid group is given incorrectly in the statement

on page 26. The correct answer for the stable braid group is listed here, while
modifications for the other braid groups Bk follow directly.

Let p be an odd prime. The mod-p cohomology of the stable braid group
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is isomorphic to a tensor product of exterior algebras with generators in degree
2/7' — 1 for /' at least zero and divided power algebras with generators in degree
2pl - 2 for i at least one. The difference is that between a truncated polyno-

mial algebra as stated on page 26 and a divided polynomial algebra. A similar

result applies at p = 2 where the cohomology is a tensor product of divided

polynomial algebras with generators in degree one less than a power of two.

2. The mod-p homology of the infinite symmetric group infinity was first

determined in the 1950s by Nakaoka, who also determined the Hopf algebra

structure [N]. He also gave the cohomology ring structure. Nakaoka's results
here formed a template for many further results in the subject, and they are

analogous to the Araki-Kudo and Dyer-Lashof operations [AK, DL].
3. The homology of the braid group or configuration spaces of points in

any Euclidean space with coefficients in either (1) the trivial representation,
(2) the sign representation, or (3) a Coxeter representation was probably first

given in [Cl, Section 4], where the "answers" are given by the interplay between

free Lie algebras and these representations, although the language differs from
that in Vassiliev's book. For example, the homology with coefficients in the

sign representation is obtained by setting X, in the above reference, equal to a

circle and shifting degrees. Similar results apply to other manifolds [BCT].

4. Vassiliev incorrectly states that his Theorem 16' is a generalization of the
main theorem in [CCMM]; indeed, Theorem 16' is already given as Theorem

1.5 ofthat paper.
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