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This sixty-third volume of the Birkhäuser series in Operator Theory: Ad-
vances and Applications returns to the fundamentals of the first volume by

H. Bart, I. Gohberg, and M. A. Kaashoek on Minimal factorization of matrix

and operator functions. Operator theory is the field of mathematics that has the

strongest interaction with the scientific and technological developments which

are characteristic of the twentieth century. The present volume is an essential
definition of the field for any center of learning that would like to offer viable

programs in contemporary mathematics and engineering.
Operator theory is at the same time an abstract discipline which has the

invariant subspace concept as a central theme. Although a continuous linear
transformation of a nontrivial Banach space into itself need not have a nontriv-
ial invariant subspace, it is expected that a nontrivial invariant subspace always
does exist for the adjoint transformation, which acts on the dual Banach space.

Should this expectation not be satisfied, there still remains a plentiful supply

of operators that do have invariant subspaces. The field of operator theory can
safely concentrate its efforts on the applications of invariant subspaces when
they exist. The results obtained, however, acquire new significance as more

general existence theorems for invariant subspaces are found.
The present volume begins with a discussion of the integral representation

of an operator that can sometimes be given when a maximal chain of invari-

ant subspaces is known. Projections onto the invariant subspaces are assumed

given, and a uniformity hypothesis is made. These conditions are satisfied, for

example, by a compact operator acting on a Hubert space. The operator is
represented as a Stieltjes integral using the projections belonging to the chain.

Such a chain of projections can also be applied to operators which do not

have the ranges of the projections as invariant subspaces. The objective is then
to factor the operator into a product of an operator which does have the ranges

of the projections as invariant subspaces and an operator which has the ranges of
complementary projections as invariant subspaces. In finite-dimensional spaces

this corresponds to a factorization of a matrix as the product of a lower tri-
angular matrix and an upper triangular matrix. There is an unavoidable am-
biguity in such factorizations because of the existence of diagonal matrices.
The treatment of the diagonal becomes a fundamental issue in the integral
representations which generalize the lower-upper triangular decomposition to
infinite-dimensional spaces.

The transition that is made from matrices to linear transformations in spaces

of infinite dimensions is a particularly fine aspect of the present work. Rarely do

mathematicians employ such constructive methods that are rich in applications

and are suggestive of theoretical generalization. The effect of these results is to
reduce the theory of integral equations, and therefore also the spectral theory

of differential equations, to invariant subspace theory.
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Some comments need to be made on the technical aspects of the work since

the present formulation does not contain the spectral theory of the Löwner dif-

ferential equation as it appears in the proof of the Bieberbach conjecture. For

this application the concept of an invariant subspace needs to be generalized.
Spaces which are contained continuously and contractively but not necessarily
isometrically in the given space need to be considered. The appropriate gener-
alization of a projection is a selfadjoint transformation P which satisfies the
inequality P2 < P rather than the corresponding equality. Krein spaces seem

to be the natural context for the formulation of integral representations because
they permit a natural generalization of the concept of orthogonal complement
which underlies the concept of projection.

A Krein space is a vector space with scalar product which is considered in

the weak topology induced by duality with itself. The space also has a Mackey
topology which is assumed computable by a Hilbert space metric. Continuity
of a transformation is in principle taken with respect to the weak topology, but
an equivalent concept of continuity for linear transformations is obtained with

respect to the metric topology. A linear transformation T of a Krein space ¿P
into a Krein space S is said to be contractive if the inequality

(Tc, Tc)s < (c,c)<?

holds for all elements c of & .
If a Krein space ¿P is contained continuously and contractively in a Krein

space %?, then a unique Krein space S exists which is contained continuously
and contractively in %? and has these properties: The inequality

(c,c)r< (a,a)3> + (b,b)#

holds whenever c — a + b with a in ¿P and b in ¿f. Every element c of %?

admits some such decomposition for which equality holds.

The space S so obtained is uniquely determined by the space 9° and
is called the complementary space to ¿P in %?. Minimal decomposition is

unique. It is obtained with a = Pc and b = (1 - P)c where P is a selfad-
joint transformation of %? into itself whose graph coincides with the adjoint

of the inclusion of & in Mf. The transformation P so obtained satisfies the

inequality P2 < P. If P is a given selfadjoint transformation of a Krein space
%? into itself which satisfies the inequality P2 < P, then unique complemen-

tary Krein spaces & and S exist such that the above computation of minimal
decompositions applies.

The concept of complementation differs from the usual concept of orthogonal
complement only in that nonzero elements may exist in the intersection of &

and S. These elements however are well behaved in that they form a Hilbert
space Sf with scalar product defined by

(C, C)s> = (C, C)gc + (C, C)g.

The existence of the Hilbert space effectively dilates complementation theory to
the usual concept of orthogonal complement. Theorems about projections, and
therefore the integral representations of the present volume, have an immediate

generalization with selfadjoint transformations P which satisfy the inequality
P2<P.

The generalization is significant because the notion of subspace carries with
it a notion of size rather than just a notion of space occupied. The notion of
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size is flexible in that negative quantities are permitted, as in borrowing money.

The resulting estimation theory is essential in interpolation problems related to

the Bieberbach conjecture.
The theory of integral representations is the fifth part of the present two-

volume series. The sixth part is concerned with Toeplitz operators.

One of the characteristic features of twentieth century mathematics is the
remarkable interplay between invariant subspace theory and complex analysis.
The concept of a Toeplitz operator allows the most immediate expression of

that important relationship.
If m is a given positive integer, consider the m-dimensional Euclidean space

realized as column vectors with complex entries. The conjugate transpose of
such a vector c is a row vector c~ . The matrix product c~c is a number
which is equal to the square of the Euclidean norm of c. The vector Hardy

space is defined as the Hilbert space of square summable power series
oo

/(z) = 5>„z"
n=0

with vector coefficients

\\f\\2 = Za;an.

There is a related Hilbert space of vector Laurent series.
An m x m matrix with complex entries is regarded as an operator on vectors

using the usual matrix multiplication. A more complicated operator is associ-

ated with a Laurent series
+00

<b(z) = Y,AnZn
—00

whose coefficients are such matrices. If
+00

/(z) = 2>„z"
—00

is a square summable vector Laurent series, then a square summable vector

Laurent series
+00

g(z) = Y,bnZn
—00

may be definable as a formal product

g(z) = <P(z)/(z).

This is the case when <P(z) is the Fourier series expansion of a bounded mea-
surable matrix function on the unit circle. Important special cases occur when

the function represented on the unit circle is continuous or is in the Wiener

algebra.
An algebra of operators on the space of square summable vector Laurent

series is obtained. The adjoint of an operator in the algebra is again in the
algebra. In the case that <D(z) is a power series, an invariant subspace is given

for every integer r as the set of those f(z) such that z~''f(z) belongs to the

vector Hardy space.
These examples of operators with invariant subspaces provide an opportunity

to apply the integral representations of the previous chapters. A Wiener-Hopf
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factorization of the symbol O(z) is obtained when O(z) is not a power series.
Of particular interest is the case in which O(z) is a rational matrix function,
in which case the power series determined by the factorization are matrix poly-
nomials.

The seventh part of this two-volume series is concerned with unitary linear

systems and their transfer functions. The concept of a linear system has already

been used in the treatment of Toeplitz operators.

For the purposes of the review a linear system is a matrix ( ̂  £ ) whose

entries are linear transformations acting on the Cartesian product of a vector

space called the state space and a vector space called the external space. This is
a simplification of the work reviewed where more general input-output systems

with two external spaces are considered. Essential features of the theory are

already found in the special case in which the two external spaces are equal.

The matrix acts on a space of column vectors whose upper entry is in the state
space and whose lower entry is in the external space. The main transformation

A maps the state space into itself. The input transformation B maps the

external space into the state space. The output transformation C maps the

state space into the external space. The external operator D maps the external

space into itself. The transfer function of the linear system is the power series

oo

W{z) = ^Wnz\

whose coefficients are the operators on the external space defined by W0 — D

and

WH+l = CA"B

for every nonnegative integer n .

The present treatment of linear systems emphasizes the case in which the

external space is the m-dimensional Euclidean space of column vectors, in

which case the transfer function is a power series with m x m matrices as

coefficients. Linear systems which have finite-dimensional state space are con-

sidered, in which case the transfer function is a rational matrix function. And

linear systems are also considered whose state space is a Hilbert space of arbi-
trary dimension, in which case the external space is also allowed to be a Hilbert

space of arbitrary dimension. The entries of the matrix of the linear system
are required to be continuous transformations when a Hilbert space structure

is present to supply topology. The matrix is also required to be unitary in that
case.

The theory of linear systems, which is so presented, is all the more interest-

ing for being incomplete. One theory applies when the state space has finite

dimension, and the other theory applies when the state space is a Hilbert space.
The overlap between these two theories is small, because unitary structure is
a restrictive condition on the the transfer function when the state space is a

finite-dimensional Hilbert space. An interesting direction for further research

is indicated. Consider unitary linear systems whose state space is a Krein space

instead of a Hilbert space. The problem is to determine whether such a theory

can contain the theory of linear systems with finite-dimensional state spaces. It

is too much to require that the unitary linear system has a finite-dimensional

state space even in the case of indefinite scalar products. But it is reasonable to
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conjecture that a unitary linear system which is a dilation of the linear system

with finite-dimensional state space exists.
A related problem is to construct a unitary linear system which has a given

power series with mxm matrix coefficients as transfer function when the ex-
ternal space is an m-dimensional Euclidean space. Such a construction is now

made when the power series defines a continuous and contractive multiplication

in the Hardy space of square summable vector power series. But the construc-
tion fails to apply when the power series defines a continuous multiplication in
the space which is not contractive. The problem of constructing unitary linear

systems with given transfer functions therefore remains of interest for further

work. Of particular interest is the construction of unitary linear systems whose

transfer function is a given rational matrix function.

Linear systems are interesting because they can be multiplied when they have
the same external space. The product of two linear systems is a linear system

whose transfer function is the product of the transfer functions of the factors
and which is a unitary linear system when the factors are unitary linear systems.

The state space of the product linear system is now taken to be the orthogonal

sum of the state spaces of the factors. The main transformation of the product
linear system has the state space of the left factor as an invariant subspace
and coincides with the main transformation of the left factor in the subspace.

The resulting relationship between factorization and invariant subspaces is the
reason for interest in linear systems.

A unitary linear system with main transformation A, input transformation

B, and output transformation C is said to be pure when no nonzero element

/ of the state space exists such that CAnf and B*A*"f are the zero element

of the external space for every nonnegative integer n. Since unitary linear

systems which are determined by their transfer functions are wanted, a desire

for pure unitary linear systems results. If a given unitary linear system is not

pure, there may exist a related pure unitary linear system which has the same

transfer function. This is always the case when the set of such elements /
forms a Hilbert space which is contained continuously and isometrically in the

state space.
Complications in the relationship between factorization and invariant sub-

spaces result because the product of two pure unitary linear systems need not

be pure. However a related pure unitary linear system can often be constructed.

Complementation theory supplies a context in which such a construction can

be made. The decomposition of the state space of the product linear system
into the state spaces of the factors is then made using a sum in the sense of

complementation theory rather than an orthogonal sum. An alternative concep-

tion of the multiplication of unitary linear systems which is advantageous in

applications results.
Applications of the theory of unitary linear systems appear in the interpo-

lation theory of analytic functions. A problem which is due to Carathéodory

and Schur is to characterize an initial segment of coefficients of a power se-
ries which represents a function which is bounded by one in the unit disk. A
problem which is due to Bieberbach is to characterize an initial segment of co-
efficients of a power series which represents an injective function in the unit
disk. A variant of the Bieberbach problem is to characterize an initial segment
of coefficients of a power series which represents a function which is bounded

by one and injective in the unit disk.



BOOK REVIEWS 241

A solution of the Carathéodory-Schur problem is given using the theory of

unitary linear systems whose state space is a Hilbert space and whose external
space is the one-dimensional Hilbert space of complex numbers considered with

absolute value as norm. A related construction which applies to the Bieberbach
problem is the Grunsky transformation. A solution of the Bieberbach problem

is not known because the extension problem which appears in that case is more

difficult. For that purpose the treatment of extension problems, such as occur
in commutant lifting, needs to be simplified. An extension problem is solved by

constructing a norm which correctly describes the constraints on the extension to

be made. The reviewer proposes complementation theory as a natural method
of constructing such norms.

A diagram from complementation theory is typical of such constructions.

Assume that &> and S are complementary subspaces of a Krein space %*

and that n is a contractive partial isometry of %? onto a Krein space %?'.

Then unique complementary subspaces ¿P' and &' of S(f" exist such that

n acts as a contractive partial isometry of & onto ¿P' and of S onto &'.

The diagram expresses a stability property of complementation under certain

kinds of transformations. A Krein space which is decomposed, perhaps orthog-

onally, into complementary Krein spaces is given. Now hit the full space with

a contractive partial isometry. Despite the severity of this distortion, the initial
decomposition survives in a modified form which is expressed by the subtleties

of complementation theory. This feature of complementation theory is what

makes it useful in applications. Note that the underlying scalar products can be

indefinite. Extension theorems which are formulated in terms of complemen-
tation theory therefore have an immediate generalization to Krein spaces.

An early application of complementation theory appears in the Douglas fac-

torization lemma. Most discussions of the factorization, including the present
one, have deleted the original argument related to complementation theory. An

instructive exercise for the reader is to reconstruct the missing spaces, which are

contained continuously but not isometrically in the full space. The factorization
results from the contractive inclusion of one space in the other.

The eighth part of the present volume is a welcome treatment of the the-

ory of Banach algebras. This subject is appropriate because some aspects of
invariant subspace theory are best formulated for operator algebras rather than

for isolated operators. The Gelfand theory of commutative Banach algebras is,
for example, the main motivation for the existence of invariant subspaces. The

Stone-Weierstrass theorem is a fundamental construction of invariant subspaces
in that context.

The reviewer however was disappointed that the original proof of Marshall
Stone was presented rather than the more direct argument which results when

the Krein-Milman theorem is applied. There is a scarcity of applications of
the Krein-Milman theorem, because few compact convex sets are known whose

extreme points have interesting properties. The Stone-Weierstrass theorem sup-

plies a context in which extreme points are characterized in a way which is useful

for solving an approximation problem. Since the problem is also an invariant

subspace problem, the Krein-Milman theorem becomes a principal motivation
for the existence of invariant subspaces. Of particular interest is the relation-
ship between invariant subspaces and approximation which is established in the
Stone-Weierstrass context.
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A successful invariant subspace theory results for a normal operator on a
Hilbert space. A von Neumann algebra of operators on a Hilbert space is de-

termined by a knowledge of the common invariant subspaces of the elements

of the algebra, but a corresponding structure theory is not known for a more

general algebra of operators on a Banach space. The adjoints of the elements of

the algebra are operators on the dual Banach space. Metrically closed subspaces

of the dual space which are common invariant subspaces for the adjoints of

the elements of the algebra are expected. The algebra is expected to be essen-

tially determined by a knowledge of such subspaces. Vector generalizations of
the Stone-Weierstrass theorem are the sources of these expectations, which are

satisfied in the case of a von Neumann algebra of operators acting on a Hilbert

space.

Operator algebras are also considered for an axiomatization of Wiener-Hopf
factorization. A Banach algebra with unit is said to be a decomposing algebra

if it is the sum of two nontrivial closed subalgebras. Every element of the

full algebra which is sufficiently close to the identity is uniquely the product
of two elements, each associated with a given subalgebra. Applications of the

factorization to the matrix Wiener algebra are given. Another insight into the
factorization theory of rational matrix functions results.

The factorization theory so obtained has an undetermined relationship to the
factorization theory for unitary linear systems. A factorization problem can be
considered for unitary linear systems whose state space is a Krein space and

whose external space is a finite-dimensional Hilbert space. The problem is to

factor a given unitary linear system as a product of a unitary linear system whose

state space is a Hilbert space and a unitary linear system whose state space is the

antispace of a Hilbert space. Such a factorization is supplied by the Nevanlinna

factorization theory for scalar functions which are analytic and of bounded
type in the unit disk. A solution of the problem is expected when the transfer

function defines a continuous transformation in the space of square summable

vector Laurent series. Good unitary linear systems admit such factorizations. A
construction of unitary linear systems which has these good features of the scalar
theory is wanted. The reviewer would like to know whether the present Wiener-

Hopf factorization can be applied to this fundamental factorization problem
for unitary linear systems.

The final, ninth part of the volume is essentially an application of the pre-
vious methods to extension and completion problems. A technique called the

band method is introduced to keep track of the consequences of the invariant
subspace concept in extensions. There are two essentially equivalent ways of

formulating the basic extension problem. In one formulation a contractive 2x2

matrix is to be constructed by suitable choice of the lower-diagonal entry when
the other three entries are given. In the other formulation a positive 3x3

matrix is to be constructed by suitable choice of the off-diagonal corner entries
when the other seven entries are given. In either formulation of the problem a
parameterization of solutions is wanted.

The band method applies to the extension problem for selfadjoint matrices

and generalizes it to an abstract context. A particular extension, called the cen-

tral or band extension, is found, which is characterized by a maximum entropy
property. All other extensions are then derived from the band extension using a

Wiener-Hopf factorization formulated in a conjugated generalization of the the-
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ory of decomposing algebras. A linear fractional parameterization of extensions
results.

Some questions are left unanswered by this elegant construction. If a linear

fractional transformation is present, then its defining matrix is related to a

linear system. If the theory of unitary linear systems is to be taken seriously,

then the construction needs to be supplied with scalar products which make the

linear system unitary. When a unitary linear system has been found, the linear

fractional transformation needs to be seen as a factorization in the theory of
unitary linear systems.

Instructive applications of the present factorization theory are given to the

Carathéodory-Toeplitz extension problem, the Nehari extension problem, and
the Nevanlinna-Pick interpolation problem. The additional structure of a uni-

tary linear system is present in all these examples. They suggest that the present

band method can be restructured as a construction of unitary linear systems.

The authors are to be congratulated for an instructive formulation of the

current status of a field which has a major impact on contemporary science and

technology. Although the theories are not in final form, the methods applied are
permanent because they are algorithms of computation. Further research can
only deepen the understanding of why these methods are successful and widen
the scope of their applications.

Louis de Branges
Purdue University
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The subject of homotopy theory, especially stable homotopy theory, was for
many years guided by J. Frank Adams. In the final article in his selected works

[1] he wrote: "At one time it seemed as if homotopy theory was utterly without

system; now it is almost proved that systematic effects predominate." Adams

was commenting on the influence of the results discussed in Ravenel's book,

which are the subject of this review. The most striking of these results are due

to Ethan Devinatz, Mike Hopkins, and Jeff Smith [2, 5] and were conjectured
by Doug Ravenel [7] in the late seventies and early eighties.

To set the stage, recall that two continuous maps / and g from a space X
to a space Y are homotopic if there is a continuous map H : X x[0, 1] -> Y

agreeing with f on X x {0} and with g on X x {1}. One often restricts

attention to CW-complexes, i.e. spaces built in a systematic way by attaching
cells. In stable homotopy theory, one is permitted to suspend a map / : X —► Y

as often as desired; its suspension Z/ : "LX —> HY is defined in a natural way on

the suspension of X, the "double cone" obtained from X x [0, 1] by collapsing


