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chapter provides an introduction to the subject, while background on homotopy

theory and complex bordism can be located in the appendices as well as in the
author's previous book [8]. A further appendix covers results due to Jeff Smith

on the representations of the symmetric group which are needed for the proof

of the periodicity theorem. The rest of the book patiently develops the subject,
culminating in the proofs of the three forms of the nilpotence theorem and the

periodicity theorem as well as a number of further results. The author has done

a marvelous job of making difficult material accessible and inviting.
The book does contain a number of misprints and other slips. The proofs

of Theorem 3.4.2 on pages 35-36 and of Corollary 5.1.5 on pages 50-51 need
some reworking. Page entries in the index need to be reduced by two. Read-
ers may wish to obtain a helpful errata listing by contacting the author at

dravQtroi.cc.rochester.edu.

References

1. J. F. Adams, The work of M. J. Hopkins, The selected works of J. Frank Adams, Vol. II
(J. P. May and C. B. Thomas, eds.), Cambridge Univ. Press, Cambridge, 1992, pp. 525-
529.

2. E. Devinatz, M. J. Hopkins, and J. H. Smith, Nilpotence and stable homotopy theory. I, Ann.

of Math. (2) 128 (1988), 207-242.

3. M. J. Hopkins, Global methods in homotopy theory, Homotopy theory (E. Rees and

J. D. S. Jones, eds.), London Math. Soc. Lecture Notes Ser., vol. 117, Cambridge Univ.

Press, Cambridge, 1987, pp. 73-96.

4. M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and

stable homotopy theory, Bull. Amer. Math. Soc. (N.S.) 30 (1994), 76-86.

5. M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math.
(2) (to appear).

6. G. Nishida, The nilpotence of elements of the stable homotopy groups of spheres, J. Math.
Soc. Japan 25 (1973), 707-732.

7. D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math.
106 (1984), 351-414.

8._, Complex cobordism and stable homotopy groups of spheres, Academic Press, New

York, 1986.

Peter S. Landweber
Rutgers University

E-mail address : landwebeOmath. rutgers. edu

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, Number 2, October 1994
©1994 American Mathematical Society
0273-0979/94 $1.00 + $.25 per page

Mathematical elasticity. Vol. 1. Three-dimensional elasticity, by Phillippe

Ciarlet. Studies in Mathematics and Its Applications, vol. 20, Elsevier Sci-
ence Publishers, Amsterdam, 1988, 451 pp., $107.25. ISBN 0-444-70259-8

The mathematical foundations of elasticity theory were established in large

part during the nineteenth century by mathematicians such as Euler, Cauchy,
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Navier, G. Green, Kelvin, and Duhem. Further distinguished contributions fol-
lowed from the French and Italian schools, resulting in a comparatively sound
knowledge of the basic nonlinear theory. However, for much of the first half of

the present century, nonlinear aspects became increasingly neglected in favour
of the linear theory. The change in emphasis was probably due to the unavail-

ability of appropriate theorems in nonlinear analysis and differential geometry

and to contemporary technology being content with predictions based on linear

theory. This period, which continued until approximately the Second World
War, witnessed some notable achievements recorded, for instance, in the clas-

sic books by Love on the general linear theory and by Muskhelisvili on the

complex variable treatment of plane linear elasticity. The period also produced
exact solutions to a wide range of special problems of importance in practical
applications and, towards the end, a diversity of approximating techniques for

the estimation of solutions.

Yet it had long been realised that certain experimental effects could not be
satisfactorily explained solely by the linear theory, and this, combined with

the postwar expanding demand for more precise results, stimulated a revival

of interest in the nonlinear theory. At first, attempts were fragmentary, some-

times dependent upon heuristic assumptions of doubtful validity and employ-
ing adaptations of linear arguments. Then in the 1950s there emerged the in-

vigorating, pioneering contributions of mathematicians such as A. E. Green,

R. S. Rivlin, and C. Truesdell, who sought to structure the development of elas-

ticity, and indeed of continuum mechanics in general, within a clear rational

framework. Here were young blades in lush meadows ripe for harvest. Guided

by clear physical insight, techniques from algebra, analysis, and tensorial and

differential geometry were applied to the exact mathematical development of

the axiomatic foundation formulated by Noll and others. The notions of strain

and of stress and the constitutive relations between these quantities along with

the basic invariance and balance laws were clarified and illuminated, providing
an incisive understanding of these fundamental concepts and principles. Defini-

tive versions of results were sometimes not easily agreed upon, and the ensuing

discussion, often spiced by healthy controversy, helped to identify and refine

essential elements in an argument. Many new theories of continuum mechanics

were generated, including those of simple materials, directors, and multipolar
and generalised mechanics.

The influence of these ideas has been immense, and they have attracted many

distinguished scientists and engineers from North America, Europe, Japan, and

elsewhere. However, by the mid-1970s there were indications that the sub-

ject was beginning to subside under the accumulation of a vast, often baroque,

mathematical apparatus which many increasingly regarded as arid and remote.
Physical motivation was becoming obscured, and often continuum mechanics
was apparently introduced merely to justify the applicability of arcane mathe-

matical theorems. Inevitably the initial intoxication evaporated, and progress,

including that on the foundations of continuum mechanics, slowed consider-

ably. Even today, for example, general agreement has not yet been conclusively

reached on the complete formulation of plasticity and thermodynamics.

Of the new theories proposed, probably only those of liquid crystals and of
non-Newtonian fluids have sustained an interest comparable to that of the clas-

sical theories of the Navier-Stokes fluid and of elasticity. These latter theories,
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despite any disenchantment with overelaborate use of mathematics, still remain

a fertile source of intriguing and deep mathematical challenge motivated by
practical questions. In particular, modern studies in elasticity are regaining the
former vigour of the postwar era with genuine advances occurring not so much

in the basic structure, which is almost complete, but in qualitative properties

of solutions to initial and boundary value problems. But here a peculiarity
presents itself. It is remarkable that activity should be sustained in a subject

that at first sight is in many respects concerned with an ideal model of a phys-

ical process and thus of dubious applicability. For example, the absence of

any dissipation or damping in the model means that a major observable is not
taken into account; and although such effects become irrelevant in elastostat-

ics, an equilibrium position is, after all, accessible only through a necessarily
damped motion. Thus, it is questionable, for example, whether elasticity is an

appropriate theory for either buckling or asymptotic (dynamic) stability. Even
apart from such shortcomings, there are other constraints, similarly imposed

by physics, which cannot be ignored and whose inclusion in the model render
many otherwise useful mathematical theorems inapplicable or in need of severe

modification. One such notable constraint is the postulate of the noninterpen-
etration of matter, which translates into the mathematical requirement of a
positive determinant of the deformation gradient tensor. Another well-known

difficulty involves the form of the strain, or stored, energy function and conse-

quently that of the constitutive relations. Unlike the Navier-Stokes fluid where
these relationships can be precisely defined, in elasticity the form of the strain
energy function is still largely undetermined, being so far limited only by invari-
ance and other requirements like growth assumptions. Indeed, a fundamental

open problem is to discover restrictions on the strain energy and constitutive
relations which are physically realistic and mathematically tractable. Of course,

particular algebraic forms have been proposed and matched to physical data,
and they provide some indication of these limitations. Ultimately, however, it

is reasonable to expect that a set of necessary and sufficient conditions to be
satisfied by the strain energy should follow from the assumption that the initial
and boundary value problems are well posed in the sense of Hadamard. Imme-

diately, further difficulties then arise in the implementation of this customary
requirement. Firstly, global uniqueness of the solution to boundary value prob-

lems in nonlinear elasticity is undesirable, as can easily be demonstrated by
the simple examples of buckling, the hemispherical annulus, and a doubly con-

nected region. Thus, the mathematically attractive property of convexity with

respect to the deformation gradient is excluded for the strain energy. On the

other hand, local existence and uniqueness are to be expected, lend justification
to the linearised theories, and have been established by means of the inverse and
implicit function theorems. Yet again uniqueness for the initial displacement
problem in the whole space and in the class of certain weak solutions has been
established under the hypothesis of rank-one convexity on the strain energy.

But generally the understanding of uniqueness is incomplete, and indeed classi-

fication of initial and boundary value problems where uniqueness is physically
plausible and mathematically provable remains open.

Several proofs of existence in the full nonlinear boundary value problem are

based upon the monotonicity of the stress or, equivalently, the convexity of

the strain energy function, which, as just remarked, is an unsatisfactory as-
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sumption, since it not only contradicts nonuniqueness but also conflicts with
fundamental invariance properties. A more successful approach to existence,
however, is the classic device introduced by Ball [1], who, appealing to the

variational calculus, required the strain energy to be poly-convex, a condition

weaker than, but implying, the condition of quasi-convexity introduced by Mor-

rey. This enables the previous difficulties to be circumvented and existence to be
established without global uniqueness for the displacement, traction, and mixed

boundary value problems. Existence is proved, however, only for certain weak

solutions; and precise regularity of minimisers is still under active investigation,
the study extending to include the practically important problems of cavitation

and crack initiation. Very recently, Sverak [5] refined the relationship between

poly-convexity and rank-one convexity and showed by means of an ingenious

counterexample that the latter does not imply the former condition even for

a quadratic strain energy density function. The converse implication has been
known for some time.

The understanding of existence in the corresponding dynamic of problems

is fragmentary but nonetheless crucial if, for instance, knowledge of stability is

not to remain merely formal. Moreover, it is now clear that classical solutions

in nonlinear elastodynamics cannot exist for all time: shock waves and other

singularities develop, and hence analysis of existence must be undertaken in
the class of generalised solutions. But generalised solutions may be nonunique

and hence lead automatically to instability unless a selection procedure, such

as the viscosity method, is used to recover uniqueness. Moreover, it is an open

question as to whether the class of generalised solutions required for existence

will be the same as for the class of solutions appropriate for the determination

of stability, since different hypotheses may be necessary. It is likewise uncertain
whether the postulates for continuous dependence upon the data in the equilib-

rium boundary value problems will be consistent with those of poly-convexity
and others on which proofs of existence in the static problem rely.

And cutting across these traditional problems are others arising from the
progressive realisation of the practical significance in nonlinear elasticity of

ill-posed and inverse problems and of problems in optimisation and control.

Furthermore, the number of exact solutions to both static and dynamic problems

is rather meagre, providing few benchmarks for the increasing availability of
computer packages.

Despite these limitations, the unresolved problems of nonlinear elasticity

have retained their fascinating challenge, not only because they usually require

a formidable mastery of sophisticated, advanced mathematical techniques, fa-

cilitated by judicious application of computer-aided analysis but also because

nonlinear elasticity possesses ramifications for several other cognate theories of
continuum mechanics. Thanks to the perception of Ericksen, there is a link

with the theory of phase transitions in solids and also with the related theory

of materials exhibiting memory developed by Müller which is used equally, for

example, in space technology and dental science. These new areas are the fo-

cus of significant contemporary activity which, because the governing nonlinear

partial differential equations may be of indefinite type, has required extensive

associated developments in the variational calculus and the theory of differen-
tial equations, including the realisation of the importance of Young measures.

Elasticity has also provided the motivation for extending the theory of compos-
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ites which via the notion of homogenisation has likewise stimulated research in

nonlinear partial differential equations. Another challenge has been the accurate

derivation of the theory for lower-dimensional bodies (rods, plates, and shells)

from the full three-dimensional, nonlinear theory by means of reliable, precise

approximation techniques that properly consider edge effects and the related

classical issue of Saint-Venant's principle and problem. A fascinating aspect of

these studies is the exploitation by Miekle [3] of the "dynamical" structure of

the nonlinear equilibrium equations, first remarked by Ericksen, using centre
manifold and related techniques from dynamical systems.

These applications confirm both the mathematical and physical importance
of elasticity as a nonlinear theory in its own right. There is a further sense, how-

ever, in which elasticity can be justified. Within solid mechanics, it occupies an
archetypal, occasionally surrogate, role for several other more complex theories
such as thermoelasticity, viscoelasticity, electromechanical, multipolar, and di-

rector theories. Unless problems can be resolved in elasticity, their solution is
unlikely in these other contexts, and thus major attention is rightly devoted first

to developments in the elastic theory.
The profound nature of the mathematical challenge presented by elasticity

has resulted in steady, gradual, and sometimes spectacular advances. As already

mentioned, the requisite mathematics is frequently unavailable and must be

separately developed; but despite these obstacles, achievements have steadily

accumulated and have been recorded in several books, commencing with the

monumental monographs by Truesdell and Toupin [7] and by Truesdell and

Noll [6]. At the risk of being invidious, we also mention the recent volumes by

Marsden and Hughes [2] and by Ogden [4], which respectively emphasise the

differential geometry and algebraic aspects of the subject. There has not been,

however, any corresponding authoritative text based primarily on an analytical
treatment. This omission is now remedied by the excellent book under review.

The author himself has employed analytical techniques to contribute signif-
icantly to a fundamental understanding of the subject; thus he is admirably

qualified to write an extended account which, as the preface explains, is "... a
thorough introduction to contemporary research in [nonlinear] elasticity, and

a working textbook at the graduate level for courses in pure or applied math-

ematics or in continuum mechanics." Although published over six years ago,

this highly commendable and readable book retains a remarkable topicality and

succinctly covers most important recent developments in a self-contained man-

ner, requiring "only basic topics from analysis and functional analysis." The

present volume is the first of two, the second of which, still to be published, is

planned to include a treatment of the exact derivation of the theory of lower-

dimensional bodies from the full three-dimensional nonlinear theory along with

comprehensive discussions of plane elasticity and nonlinear elastodynamics.

The first volume establishes the fundamentals of the subject in its opening

chapters, which also deal fully with the necessary mathematical preliminaries
from analysis, algebra, and geometry as well as reviewing the axioms and basic

laws of continuum mechanics. These chapters also derive the main results for

the three-dimensional, static theory and discuss hyperelasticity for which a strain

energy function is assumed to exist.

Because of the comparative paucity of results, relatively little space is de-

voted to uniqueness and continuous dependence, but the rest of the subject
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is amply treated, with separate chapters devoted to constitutive relations, the

properties and form of the strain energy function in hyperelasticity, and the
formulation of boundary value problems. The latter chapter also summarises

interesting results concerning both unilateral and geometrical constraints and
the problems associated with self-contact and the noninterpretation of matter.
Attention is properly focused on the question of existence of a solution to the

standard equilibrium boundary value problems; and the two main approaches,

respectively, involving the implicit function theorem and the variational calcu-

lus (minimisation techniques), are presented in clear detail within the context

of functional analysis. These admirably coherent descriptions are immensely

valuable to those wishing to gain a lucid introduction to these vitally important
topics, whose understanding is essential, for example, to the proper design of

computer packages. Somewhat inevitably, the very recent work on the phase
transitions and on material defects and instabilities is omitted; but this remark

is not intended as any sort of criticism, since in view of the rapid developments
still occurring in these research topics, it is arguable whether they are at a stage
suitable for inclusion in a book of the present kind.

Even without these latest advances, the vitality and challenge of elasticity

are splendidly conveyed by the author. There is frequent mention of the major

open problems, and interspersed throughout the text is a succession of remarks

that illuminate and amplify the core material thoroughly developed in the form
of theorems and accompanying proofs. Naturally, a first reading should be con-

fined to the major theorems, but the experienced researcher will discover much
of interest in these astute and perceptive observations. Most chapters conclude

with a set of exercises complementary to the text or successfully provoking new

ideas, while notation, in continuum mechanics often a formidable redoubt to
comprehension, here provides considerable assistance.

The author states that his aims are to convince "the application-minded

readers that analysis is indispensable for a genuine understanding of elasticity,

... especially in view of the increasing emphasis on nonlinearities" and, on the

other hand, to convince "the more mathematically oriented readers that elastic-

ity, far from being a dusty classical field, is on the contrary a prodigious source

of challenging open problems." These aims are abundantly fulfilled, and the
enriching interlacing of mathematics with sound physical insight firmly places
the book in the tradition of those who in the postwar period set about the task
of revitalising and rigorously restructuring continuum mechanics. The book,
a masterly account of the subject, deserves the widest readership. The second
volume is awaited with equal enthusiasm.
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Faced with a collection of mathematical objects, mathematicians seem to
suffer a compulsion to put them in order (with the notable exception of the

preprints scattered over their desks). Hence some form of "classification prob-

lem" arises over and over in different fields of mathematics. The usefulness of a

solution to a particular case of the classification problem depends on what pre-

cisely is meant by a classification and on how closely the classification is linked

to the structure of the objects being classified. For example, closed orientable
surfaces are completely classified by their genus, a fundamental structural prop-

erty of the surface. This is a useful classification. By contrast, there is a simple

algorithm to generate a list of all the prime numbers; here the list itself is not
terribly informative. Nevertheless, there are certainly cases where we would be

grateful simply to know that such a list existed. An algorithm to generate a com-
plete list (without duplication) of all closed 3-manifolds, for example, would be

a fine thing. An algorithm that could actually be implemented would be even
more wonderful.

In this orderly spirit, knot theorists have been compiling lists of knots for
decades. Almost every book on knot theory has a table of knots as an appendix

[BZ, K, R]. These tables typically list all distinct knots that can be drawn in
the plane with ten or fewer crossings. A triumph of new invariants [J] in knot
theory, brilliant computer programming [We], and some handy work with a

piece of string [P] allow us to distinguish not only among the knots in these
tables but also among knots of considerably greater complexity. Nevertheless,

hand a knot theorist two drawings of knots with three hundred or so crossings,

and chances are excellent that he or she will be unable to decide whether the
two knots are the "same"; i.e., if each were tied in a piece of string, whether one
could be deformed into the other. Until the work of Haken [H] in the late 1970s

there was no way, even theoretically, to make the decision. Haken's work, with

a piece contributed by Hemion [He], gives an algorithm to decide whether two
knots are the same and, hence, allows us to compile a complete nonduplicating
knot table, i.e., to "classify" all knots.


