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Two generalizations come to mind for the familiar constructions of complex

numbers as 2 x 2 matrices of reals and quaternions as 2 x 2 matrices of complex

numbers. On the one hand, there is the construction that leads to the general

class of composition algebras and its elegant but limited theory, i.e., normed

algebras in which the norm of a product is the product of the norms, and on the

other, the various constructions yielding the much more useful Clifford algebras.

The purpose of this book is to provide a systematic and, for the most part,

self-contained introduction to the use of Clifford algebras and Dirac operators in

analysis. These applications are often deep and technically complicated, includ-
ing, for example, the Cauchy integral and Hilbert transform theory on multidi-

mensional Lipschitz domains that was originated by Calderón [ 1 ] and continued

in [2], [3], and [4], the realizations of discrete series for semisimple Lie groups
[5], and the Atiyah-Singer index theorem [6]. One of the authors' goals was to

make such material more accessible to classically trained analysts. To this end,
they have given a very thorough treatment of the underlying algebraic aspects

of the theory, including numerous examples and the main structural results on

Clifford algebras and the various associated spin groups. On the analytic side,
which is more tersely presented, they have concentrated on the applications
to singular integral theory, generalizations of Hardy space theory, problems in

representation theory involving harmonic functions, and generalized Cauchy

Riemann systems associated with the Dirac operator.

In the book under review, A Clifford algebra is an associative algbera sf with

identity that is specified by a finite-dimensional real or complex vector space

V, a symmetric bilinear form B on V, and a linear embedding v of V into
sf suchthat sf is generated by v(V) and

(1) v(x)2 =-B(x, x)

for all x in V, scalars being identified with multiples of the identity in sf .

Familiar polarization identities show that ( 1 ) is equivalent to the statement

(2) v(x)v(y) + v{y)v(x) = -B(x,y)

for all x, y e V. This definition, apart from the unnecessary but sensible re-
striction on the underlying fields, is more general than the one found in some

familiar treatments of the subject [7], [8], [9]. Here there may be nonisomorphic

Clifford algebras associated with a given pair V, B ; however, there is a univer-

sal Clifford algebra for V, B that is unique up to isomorphism. The Clifford

algebra sf , v is universal for V, B if for every Clifford algebra sf', v' for

V, B there is an algebra homomorphism p : sf —» sf' such that pu = v' ;

this is equivalent to the statement that sf is freely generated except for the

relations given by (2). If n is the dimension of V, it is easy to see that the
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dimension of any Clifford algebra sf for V, B is at most 2" and that sf is

a universal Clifford algebra iff its dimension is 2" .
For example, the standard quaternions i, j, k span a real vector space of

dimension 3 and with v the identity satisfy (1) relative to the usual quater-

nionic norm; however, there is an additional relation, namely, ij = k, and the

dimension of the quaternion algebra is 4 rather than 8. But this algebra is

universal for the subspace spanned by i, j.

Assume that sf , v is a universal Clifford algebra for a real vector space V

with a nondegenerate form B . Let Q be an open set in V and e{, ..., e„ an

orthogonal base for V. Then the Dirac operator associated with this data is the
first-order differential operator on C°°(Çl,sf) defined by

n

(3) D = J2B(ej,ej)ejdj.
y=i

It is independent of the coordinate system, and its square is minus the Laplacian
associated with the same data.

The authors give three proofs for the existence of universal Clifford algebras.

The first construction realizes the algebra as an iterated tensor product of two-

dimensional algebras, the second is a realization by linear operators on the

exterior algebra associated with the underlying vector space, and the third is

a familiar construction yielding the desired algebra as a quotient of the tensor

algebra over the underlying space.

The following remarks provide a basis for an alternate inductive construction

for universal Clifford algebras. Suppose that sf is a universal Clifford algebra

for the pair V, B with embedding v : V -» sf . Then there is a canonical

automorphism a —» a! of sf of period 2, called the principal automorphism,
such that v(x)' = —v(x) for all x e V. Given this, simple calculations show
that

(4) *+ = {{-b>   a'):a'b^}

is a matrix algebra that contains a copy of sf on the diagonal. Its dimension
is twice that of sf , and again simple computations show that the formula

fa     b\ _ fa'   -b'\
\-b'   a') ~\b     a J

extends the principal automorphism of sf to an automorphism of sf+ that
also has period 2. If V+ is spanned by V and a vector e £ V, then there

is a symmetric bilinear form B+ on V+ such that e is orthogonal to V and
B(e, e) = 1. It follows that the equation

<5> ,*(*+*> = (1? _v\x))

defines a linear map v+ : V+ -> sf+ that satisfies (1). Therefore, sf+ , u+ is a
universal Clifford algebra for V+, B+ .

As an example, let F be R or C, and let Bn be the standard symmetric
bilinear form on F". Set sf0(¥) = F, and define sfn(¥) and vn inductively

by the above procedure.  Then sf„(¥), vn is a universal Clifford algebra for
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F" , Bn . When F — R, the first step in this procedure yields C, viewed as a real

algebra, and the principal automorphism is complex conjugation. The second
step constructs the usual quaternions, but note that the principal automorphism

is not quaternionic conjugation because it reverses products.

The elements in the algebras sfn(¥) may ultimately be identified with 2" x 2"

matrices, and these tend to be large—in fact, larger than necessary. Indeed,
there are smaller realizations that more clearly reveal the essential properties of

the algebras and are useful for other matters.
To describe one such realization, we first remark that for many applications

to analysis and to representation theory, the most important case is that in

which F is a real vector space of dimension n and B is an inner product.

Assuming this and setting

(6) (n) = [n/2]

the greatest integer in n/2, one may then, by [10], construct a complex inner

product space S (a spin space) of dimension 2<"> and a linear map y (a
spinor map) from V to an irreducible space of skew adjoint operators on S

that satisfies (1). Given this, let sf be the real subalgebra and W the complex

subalgebra of Endr^S) generated by y(V) and the identity operator on S.

Then sf and & are selfadjoint algebras of operators on S ; sf , v is a Clifford

algebra for V, B ; the algebra & =sf+ isf ; and the commutant of & consists

of scalar multiples of the identity on S. Therefore, by the double commutant

theorem, W — EndciS) and so has dimension 22<n>. It follows that the real

algebra sf has dimension 22<">. If the linear extension of y and the bilinear

extension of fi to Fc are again denoted y, B, then W, y is a Clifford algebra

for Vc, B. These algebras are universal, i.e., have dimension 2" iff n is even.

This construction also yields Clifford algebras of operators for nonsingular

indefinite forms, for suppose F is a nondegenerate symmetric bilinear form on

V. Then there is a linear map E : Vc -> Vc such that

F(x,y) = B(Ex,Ey)

for all x, v e V. It follows that

y(Ex)2 = -B(Ex,Ex) = -F(x, x)

for all x e V. Let sfF be the real subalgebra of fë generated by y(E(V))
and the identity operator on S. Then sfp is a Clifford algebra for V, F with

embedding y o E.
Now let t be the trace function on Ende (S) normalized so that t(1) =

1. Then Ende (S) equipped with t is a complex noncommutative probability

algebra and a complex Hilbert algebra when endowed with the inner product

(7) (X\Y) = r(XY*).

It is clear that the same is true for the Clifford algebra W, y. It is also true,

but not so obvious, that t is real valued on sf and hence that sf equipped
with t is a real noncommutative probability algebra and a real Hilbert algebra

relative to the inner product given by (7). For x e V

y(x)2 = -\x\2 = r(y(x)2) = -x(y(x)y(xY) = -\y(x)\2.

Thus, condition (1) implies, in the present context, that y is a unitary map of

V into sf .
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An elementary inductive construction for the spinor maps y may be based
on the following result.

Lemma. Let S be a complex inner product space of dimension 2<n>, x the

normalized trace function on EndcCS), and L an irreducible n-dimensional

real subspace of Endc(S) consisting of skew adjoint operators Y suchthat

Y2 = t(Y2) = -\Y\2.

Let M be the set of all operators on S © S that are specified, in the usual way,
by matrices of the form

f       Y xi + ix2\
W \-xl + ix2       -Y    )

where Y e L and x\, x2 e R are identified with multiples of the identity on
S. Then M is an irreducible real subspace of Endc(S ® S) of dimension n + 2
consisting of skew adjoint operators Z = Z(x, Y) such that

(9) Z2 = -\Z\2.

If Z is the operator defined by the matrix in (8), then (9) follows from the
fact that

/       Y Xl + ix2\2 = f-x2 -x2 - \Y\2 0

[-XÍ + ÍX2       -Y    )       \ 0 -x2-x\-\Y

To see that M is an irreducible set, let

be the matrix of an operator that commutes with M ; it must then commute
with the matrices

/on     (o i\    (y   o \
\-\    OJ'     \i   Oj '     \0    -Y]'

From this it follows that A = D, B = -C ; that B = 0 ; and that AY = Y A
for all Y € L. Since L is an irreducible set, this implies A is a scalar multiple

of the identity. Thus, M is also an irreducible set. The other assertions in the
lemma are more or less evident and, in any case, easily established.

Two examples are relevant. If n = 1, we may take S = C and L = {(iy) :

y € R} . If n = 2, we set S = C2 and

At this point, one may use the lemma and induction to construct spinor maps
for every dimension.

The spinor map y may also be used to define an explicit spin representation
of the Lie algebra of skew adjoint operators on V on the spin space S [10].

But here it is inappropriate to devote more time and space to a development of
the spin representation along these lines. Moreover, the authors treat this and
related questions in great detail by other methods.

The book by Gilbert and Murray has five chapters, the first of which is purely

algebraic. In Chapter 2 a multidimensional extension of classical Hardy space

theory is given for Lipschitz domains in which holomorphic functions are re-
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placed by functions in the kernel of the Dirac operator. In Chapter 3 some
basic representation theory is presented and explicit spinor representations are
studied. In particular, there is an abundance of interesting material, much of
which is not well known and some of which is new, on the polynomial alge-

bra on a space of rectangular matrices. Chapter 4 concerns constant coefficient
operators of Dirac type. These are linear first-order elliptic operators obtained

when one restricts the euclidian Dirac operator to appropriate subspaces of the
Clifford module on which it acts. The generalized Cauchy-Riemann operators,

first studied by Stein-Weiss [11], are examples; and this chapter presents a most

welcome unified treatment of this very appealing topic. In the final chapter,

Clifford algebras and Dirac operators are studied in the context of Riemannian

manifolds. Here it is necessary to consider the influence of curvature and other

geometric complications. The basic ideas are well illustrated by a section de-
voted to a careful discussion of the invariance properties of the Dirac operator

on hyperbolic space. There is also a complementary section on spherical prin-
cipal series representations of SO(«, 1). The book concludes with a proof of
the local Atiyah-Singer index theorem for Dirac operators [12].

Clifford algebras and Dirac operators in harmonic analysis contains a more-

than-ample allotment of ideas and techniques that should be of great interest to

a wide variety of analysts. The material itself is an attractive blend of algebra,
analysis, and geometry. It is not particularly easy, but on the other hand, it is

not impossibly difficult; and serious readers of this book should find it highly
rewarding.
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