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instructive, therefore, also to give the headings of the fourteen chapters that
constitute volumes I and II:

Linear spaces
Basics of Hubert space and linear operators
Banach algebras
Elementary C*-algebra theory

Elementary von Neumann algebra theory
Comparison theory of projections
Normal states and unitary equivalence of von Neumann algebras
The trace
Algebra and commutant

Special representations of C* -algebras

Tensor products

Approximation by matrix algebras
Crossed products

Direct integrals and decompositions

Many years ago Paul Halmos published a delightful book called A Hubert
space problem book that presented the elementary theory of operators in a se-

ries of problems (with hints and solutions). Appealing though this approach
may be, it will probably not work in a highly technical field like operator al-

gebras, where the teacher must step in from time to time to tell the student
about heavy machinery that has to be developed before further progress can be

made. Yet Halmos's dictum stands: The only way to learn mathematics is to do
mathematics.

The completed four-volume treatise by Kadison and Ringrose seems to me to

utilize the best of both methods: The fundamentals are explained as text to be

read. The numerous exercises are inserted to challenge the curiosity, to develop
"hands-on" skills, and to give a glimpse of wider spaces. Now the solutions,

as in Halmos's book, appear at the end as the logical conclusion. The authors
have erected a monument in mathematics in the tradition of Courant-Hilbert,
Dunford-Schwartz, Hewitt-Ross, and Reed-Simon.
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Not long ago, a colleague at Courant Institute asked me: "Do you know a
good reference on T-convergence and 'all that stuff'?" I realized that was not

an easy question to answer. Although the topic has existed for over thirty years,

I could not think of a single book or set of lecture notes that covered reasonably
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well the theory of T-convergence and also gave an idea of its main applications
(which I interpreted as the "all that stuff" part of the question). This was
before I became aware of Dal Maso's book. In spite of its modest claim, An

introduction to Y-convergence is much more than just that. I found a complete

discussion of the subject that originated in the now-famous work of De Giorgi
[6] on calculus of variations. T-convergence has since permeated many aspects
of analysis, particularly in the area of partial differential equations. Moreover,

T-convergence was a crucial element in the development of some of the more

formal aspects of homogenization theory, in the analysis of Ginsburg-Landau

equations for modeling phase transitions, and in many other areas of applied

mathematics.
Roughly speaking, T-convergence is the correct topological notion for the

study of the convergence of functionals in the calculus of variations. To give
a "flavor" of how some of these problems come about and of the role that

T-convergence plays in their solution, let me describe a few examples of Y-
convergence "at work".

1. A phase-field equation

Módica [9], Sternberg [14], and Kohn and Steinberg [7], among others, con-

sidered the following variational problem: Given a domain Q in Rd , minimize

the functional

(1) Fe[u] = e [ \Vu(x)\2dx + - i W[u{x)]dx,
Ja e Ja

where

u4     u2
(2) W[u] = \-j

is a "double-well' potential with minima at u = ± 1 and e is a small parameter,

subject to the constraint

(3) / u(x)dx = c = const.
Ja

The question addressed by these authors was to characterize the asymptotic
behavior of the minimizers of (1) as e -> 0. The problem itself is motivated by

the Landau-Ginsburg theory of phase transitions, in which the function u(x)

is an order-parameter representing the state of the system at the point x (see
Caginalp [3]). Here, u(x) = +1 and u(x) = -1 represent different phases, and

W is often referred to as a bistable potential. In the absence of the gradient term

in (1), minimizers are expected to satisfy u(x) = ±1 almost everywhere in the

domain Q in such a way that the integral constraint (3) is also satisfied. This

argument also applies to the minimizers of ( 1 ) for e <c 1, since the gradient
term becomes negligible compared to the W term in the variational integral.

A subtle and interesting question is to understand the shape of the interface
between regions inside Q where the minimizer satisfies u{x) « 1 and u(x) «

-1, for e < 1. The answer is provided in

Theorem 1. Let ue(x) be a sequence of minimizers of (I) satisfying the integral

constraint (3). Then {ue} has a subsequence which converges in L'(fí) to

Uo(x), where this function is a minimizer of the functional

Fo[u] = Perimeter{x e intQ: u(x) = 1},
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over the class of functions satisfying u{x) = ±1 almost everywhere and (3).

Thus, the limit of the sequence of minimizers is associated with an isoperi-
metric problem: find a partition of Í2 into two subsets Q.+ and Q_ such that

|Q+| - |Q_| = c and such that the common boundary of the two sets has the

smallest possible (d - 1 )-measure.

2. Brinkman approximation for diffusion
in a medium with absorbing traps

These results were obtained by Rauch and Taylor [12], Papanicolaou and

Varadhan [11], Cioranescu and Murat [4], Baxter and Jain [1], and Dal Maso

and Mosco [5]. Consider the problem of steady-state diffusion in a domain Q

in Rd in which the production of diffusing particles from a spatially distributed
source f(x) is balanced by absorption through a system of many small spherical
"traps" in the medium. Mathematically, this can be modeled as a Dirichlet
problem

-Aue = f{x),    xEfl(,

u£ = 0, x i Qc,

where uE is the particle density and £2£ = fi - {\JiBi(re)}. Here, B¡(re) =

{x € Rd: \x — ezj\ < rc} , z¡ e Zd , so that {5,(rE)} is a collection of spheres

of radius re with centers on a cubic lattice of mesh e representing the "traps".

Let EE = Qn {U B¡(re)} . The question of interest is, once again, to describe the
behavior of ue(x) as e —> 0. I will focus here on the particularly interesting

case where re = aed^d~2^, which corresponds to having a uniformly bounded

capacity of the set of absorbers Ee.

Let üg(x) e Hq(Q) be the extension of u£(x), x e Q£, which is equal to
zero inside the traps, i.e.,

, ue(x),    x€QE,

0, x e Ee.

Then, it is easy to see that uE is the minimizer of the functional

*"«["] = i / \Vu{x)\2dx+ [ Ie(x)u(x)dx+ [ f(x)u(x)dx,
1 Ja Ja Ja

among all u G H¿ (fí), where

+00    if x G Et,

/£(X)"L0        úxiEt.

Thus, our problem is again equivalent to finding the asymptotic behavior of the

minimizers of a sequence of problems in the calculus of variations. In this case
the solution is given by

Theorem 2. The sequence {ue(x)} converges in H¿(£1) to u0(x), where this
function is the minimizer of the functional

(4) F0[u] = x / \Vu(x)\2dx+ / 4nau{x)dx+ / f(x)u(x)dx.
1 Ja Ja Ja

Notice that the Euler-Lagrange equation for (4) is

-Amo(x) + 4nau0(x) - f(x)   infi,

u0(x) = 0 on <9Q.{
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The coefficient Ana can be interpreted as the overall capacity (in the potential-

theoretic sense) of the system of traps. Thus, macroscopically, the effect pro-
duced by a "fine-grained" system of absorbers with bounded capacity is equiv-
alent to "continuously" removing particles from the system at a constant rate

proportional to the capacity. This result is known in the chemical engineering

literature as the Brinkman approximation.

3. Definition of T-convergence

The common theme of these two examples is that the behavior of a sequence

of minimizers of variational problems is studied: for each s > 0, uc is the
minimizer of Fc[u], u e H, where H is a function space or a closed subset of

a function space. The limit of the sequence {ue} is characterized in terms of a

"limiting" variational problem minue// Fo[u]. T-convergence is a topology on
the space of functionals which is tailored to reflect the property of "convergence

of minimizers".

Definition. Let {Fe}e>o and Fo be functionals defined on a topological vector

space H. We say that {Fe}  T-converges to F0  (Y - lim^o = Fo) if and only

if

(i)
(5) F0[u] < liminf.FE[w]

£->0

for all u in H ; and
(ii) for all u G H, there exists a sequence {ue} converging to u in H such

that

(6) limsupFe[ue] <F0[u].
e->0

T-convergence defines a topology on the set of (nonlinear) functionals on H.

In Dal Maso's book, the relation between T-convergence and other topologies is

elucidated. One of the fundamental properties of T-convergence is that (5) and

(6) are essentially necessary and sufficient conditions for the aforementioned

property of "convergence of minimizers" to hold.

T-convergence is the correct mathematical framework to formulate rigor-
ously a variety of problems coming mostly from physics. In these problems,
the quantities of interest satisfy variational principles like the ones mentioned
above. The dependence of the functional on a small parameter (e in the above

examples) reflects the fact that the problem in question has two or more rele-
vant physical scales (measuring distance, time, mass, etc.). The small parameter
represents typically the ratio of these scales. In many cases, the existence of a
T-limit is associated with a simple description of the physical phenomenon, as
we saw in the two examples.

4.  HOMOGENIZATION THEORY

The standard reference for this subject is Bensoussan, Lions, and Papanico-
laou [2]. I will discuss here the simplest situation, corresponding to the macro-
scopic behavior of a composite material, say, a thermal insulator. Consider a

domain Q in R3 and the Dirichlet problem

f V-/c(f)-vr£(x) = 0,    xg£2,

\Te(x) = g(x), xedCl,
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where g(x) can be interpreted as a steady-state temperature on the boundary of

a material occupying the region Q. The function k(-) is periodic with period
1 and satisfies Ky < k(x) < Ki, where K\ and K2 are positive constants. For

instance, we can consider the case in which k(x) takes only two values K\ and

K2, which corresponds to a two-phase composite with constituents arranged in

a periodic manner. The parameter e represents the ratio between the "macro-

scopic" scale (the diameter of the domain Q or the scale of variation of the
function g) and the "microscopic" scale (the typical scale on which the thermal

conductivity varies). Usually e is quite small, and the problem of interest is
to understand the asymptotic limit e —► 0 of the function Te and its gradient

Vr£. Recall from elementary physics that, from Fourier's Law,

Qe(x) = -K (Î) VTe(x)

represents the local thermal flux at the point x . As e —► 0, the composite

is expected to behave like a homogeneous continuum with constant thermal
conductivity k* . Mathematically, this means that

limr£(x) = T0(x)
e->0

and
limß£(x) = -rC*Vr0(A:),
e—»0

which can be regarded as an "effective" or "homogenized" Fourier's Law. To

study the existence of a homogenized conductivity and to investigate its prop-
erties, one can set up the problem as the study of the T-limit of the sequence
of quadratic functionals

F.[T] = I k (Í) VT(x) ■ VT(x) dx,

for T in H¿(íl) (endowed with the weak topology). The T-limit of {FE} is
characterized in

Theorem 3.

Y-limFe = F0,
£—►0

where

(7) F0[T] = / k*VT(x) ■ VT(x) dx.
Ja

The homogenized conductivity tensor k* admits the following characterization:

let Q = [0, l]x[0, l]x[0, 1]. Then, for all 6 e R3,

e.K*-e= [ K(y)\d + vX(y)\2dy,
Jq

where x(y)'- B3 -> R is a Q-periodic solution of the PDE

V • [K(y)(d + VX(y))] = 0.

This theorem, the proof of which can be found in [2, 13], admits numerous

generalizations to other elliptic systems with variational integrands, including
elasticity theory, Stokes flow, nonlinear constitutive laws, etc.

5. Dal Maso's book

As the reader probably suspects, the three examples given here require dif-

ferent, specific mathematical tools for their solution. In fact, it is possible to
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formulate and solve these problems in applied mathematics in a "concrete"

way, without recourse to the abstract theory of T-convergence. Nevertheless,
much like other areas of mathematics such as, say, the theory of distributions,

T-convergence provides us with a unified framework for thinking about many

different problems. In this reviewer's opinion, T-convergence represents, more

than anything else, a general, conceptual theory for studying asymptotic problems

in the calculus of variations.
In his book, Dal Maso makes great efforts to develop a complete theory of

convergence of functionals. A useful study is made, comparing T-convergence

to other topologies on functionals defined on topological vector spaces, such

as the Kuratowski topology. The conditions which ensure compactness of a se-

quence of functionals under the topology induced by T-convergence are studied

in detail. (This issue has found some interesting applications in the theory of

optimal design of composites; see for instance Kohn and Strang [8] and Murat

[10].) As an "application", the book studies the theory of T-convergence of
sequences of classical functionals in the calculus of variations of the form

F["]= / f{x,u{x),Vu(x))dx,
Ja

where f(x, u, p) satisfies appropriate regularity and growth conditions. The

case of quadratic functionals, i.e., f(x, u, p) = £,• ,_j aij{x)piPj , mentioned

in Theorem 3, also gets a lot of attention. In this case, it is known that Y-

convergence is "morally equivalent" to the convergence of the resolvents of the

associated elliptic differential operators. All this is discussed with great detail,

and many interesting examples and counterexamples are given.

The reader interested in the applications of the theory will find that the book

covers mostly applications to homogenization theory. This is done in the last

two chapters as a brief but suggestive introduction to this vast subject.

Clearly, a separate book (or even several books) could be written on "applica-
tions" or, more precisely, on mathematical problems related to T-convergence.

An introduction to Y-convergence also presents what can be considered as a pre-

decessor of such a book, in the form of a superb guide to the literature and a

bibliography grouping about 1,000 papers on topics related to T-convergence

according to the specific area of application. This is, without doubt, the most

important bibliographical review on papers on homogenization theory, com-

posite materials theory, singular perturbations, and related subjects compiled to

date. It is fair to say that this bibliography is essentially complete up to 1991.
Due to its clear presentation of the subject and its view toward applications,

this book will be a standard reference for years to come. An introduction to

Y-convergence will be particularly useful for graduate students and researchers

in analysis and applied mathematics, who will add their own discoveries to the

broad list of mathematical problems that can be understood via T-convergence.
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Singularity theory is not a theory in the usual (axiomatic) sense. Indeed it is
precisely its width, its vague boundaries, and its interaction with other branches
of mathematics and science which makes it so attractive. In particular, the
subject draws on algebraic and analytic geometry, commutative algebra, and

differential analysis and has applications to differential and algebraic geometry,

bifurcation theory, optics, and a wide range of other topics. This width then is

encouraging, indeed exciting. But a nebulous nature can lead to identity crises,
and I then find it useful to think of singularity theory as the direct descendant of

differential calculus. It has, for example, the same concerns with Taylor series,

and one can view much current research as natural extensions of problems

with which our forefathers laboured and which were considered central. The
calculus is the tool, par excellence, for studying physics, differential equations


