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Singularity theory is not a theory in the usual (axiomatic) sense. Indeed it is
precisely its width, its vague boundaries, and its interaction with other branches
of mathematics and science which makes it so attractive. In particular, the
subject draws on algebraic and analytic geometry, commutative algebra, and

differential analysis and has applications to differential and algebraic geometry,

bifurcation theory, optics, and a wide range of other topics. This width then is

encouraging, indeed exciting. But a nebulous nature can lead to identity crises,
and I then find it useful to think of singularity theory as the direct descendant of

differential calculus. It has, for example, the same concerns with Taylor series,

and one can view much current research as natural extensions of problems

with which our forefathers laboured and which were considered central. The
calculus is the tool, par excellence, for studying physics, differential equations
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in general, and the geometry of curves and surfaces; consequently, one should

not be surprised that singularity theory will have applications in these fields.
Indeed one might judge its vigour by its success in these areas.

Such an illustrious ancestory makes it difficult to specify a date for the sub-
ject's birth. Newton certainly produced work of importance which would be

best classified as singularity theory, while Huyghens made some exciting appli-
cations in the same spirit. (Newton is one of the authors cited in the volume

under review!) Indeed many of the central notions within singularity theory
specialise to familiar ideas such as evolutes, duals, wavefronts, and caustics.

This is of course as it should be; useful "new" theories should build on older
and central ones. However, there is general agreement that the father of modern

singularity theory was Hassler Whitney, a mathematician who preferred setting
trends to following them. His work, initiated in the 1930s, culminated in a

remarkable study of generic mappings from a surface to the plane in 1955 [6].
In this paper Whitney described the local form of a general map from a surface

to a plane. Basically there are three different types: submersion, fold, and cusp.
The paper is remarkable for a number of reasons. The first point to make is

that it is not obvious that one can say anything useful at all about "general" or
generic maps. Where are the hypotheses in Whitney's theorem? Second, the
paper introduced the natural notion of si -equivalence for map germs, that is,
changes of coordinates in the source and target. Third, Whitney highlighted the

notion of stability: most mappings exhibit these local types, and (this is not
quite accurate) any such map if deformed a small amount does not change its
qualitative appearance.

The initial work of Whitney was continued and widened by Rene Thom,

using transversality as a systematic tool for investigating singularities. Indeed
transversality is one of those key ideas which is so natural that its importance

is easily underestimated. (In fact, the jet transversality result, although easy
to prove, is at first sight rather unlikely. Indeed Whitney was disinclined to

believe it before seeing the proof.) Thom also contributed the fundamental no-
tion of an unfolding (similar ideas were emerging at the same time in algebraic

geometry). Most of the deeper interesting geometrical and physical applications
hinge on this idea. At that time Thom also developed his so-called catastrophe
theory (CT), whose aim was to study the bifurcations of gradient dynamical

systems. Thorn's hope was that his results on unfoldings could be used as a tool
to understand some aspects of embyrology and other portions of developmental

biology. Many mathematicians were struck by the beauty and depth of Thorn's
results, but in retrospect one can see that a number of rather outrageous claims

were made by some of the proponents of CT, together with some rather dubi-

ous applications. Nevertheless some important extensions and modifications of
Thorn's ideas, especially to bifurcation theory, have been made, and the con-

troversy surrounding Catastrophe Theory should not mask Thorn's central and
immensely important contribution to the subject.

Around the time that Thom and others were developing Catastrophe Theory,

Mather was making rapid progress with singularity theory proper. It was Mather

who first proved Thorn's vital unfolding theorem, and he not only systematised

many of Thorn's ideas but also contributed a large number of important notions
and theorems of his own. The major result established by Mather provides a

practical criterion for a mapping to be stable, shows that the problem is essen-
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tially a local one, and for any pair of dimensions (n, p) establishes whether

or not the stable mappings between any two manifolds of these dimensions are
dense. Moreover, he also provides an algorithm for describing the local forms

of these stable mappings. This is clearly an astonishing generalisation of the
earlier work of Whitney. Indeed his six fundamental papers written between

1968 and 1971 completely revolutionised and to some extent created the an-

alytic side of singularity theory, and it was a number of years before the rest

of the community (initially Damon and Gaffney) fully absorbed Mather's ideas
and moved forward in this part of the subject.

During this period of rapid advancement Arnold introduced his notions of
Lagrangian and Legendrian singularities. Again the unfolding theorem is a cru-
cial ingredient in Arnold's theory, which does indeed have intimate connections
with CT. The reader is recommended Arnold's little book [1], both for a lively,

personal, and (I feel) overly harsh view of CT and, more interestingly, for a nice

exposition of the important contributions made by Arnold and his school to a
number of interesting geometrical problems, using techniques from singularity
theory. Arnold also made spectacular advances in the classification of functions

and in an understanding of these objects, and in particular introduced the cru-

cial concept of simple singularity (basically those functions whose classification
does not involve continuous invariants) which has proved so fruitful.

Meanwhile another strand to the subject had developed, arising from the

work of Brieskorn, Milnor, and others on isolated singularities of complex hy-
persurfaces (and later complete intersection singularities). Milnor in [5] proved
his famous fibration theorem, which had fascinating interplays with differential

topology via higher-dimensional knots, spinnable structures, and foliations. De-

lightful as Milnor's book is, it is nevertheless a rather misleading introduction

to this area; the "correct" approach is via Picard-Lefschetz theory (as suggested

by Brieskorn and developed by Arnold and his school). This side of the subject
was the one that initially underwent the most rapid development, and a very
large body of results was quickly established.

When reviewing singularity theory, one should distinguish three underlying

areas of interest. The first is the study of functions, that is, mappings with the

real or complex numbers as target. The second is the study of varieties, that

is, the study of map germs /: K", 0 -> K", 0 (here K is the real or complex
numbers) where the key interest is in the solution set /_1(0). The relevant

equivalence relation here is contact or ^-equivalence, introduced by Mather
in the seminal papers mentioned above. The third is the study of mappings up

to ^-equivalence. There are substantial differences in the technical difficulties
of the problems in these three categories. For functions one can make do with

changes of coordinates in the source only (right or ^-equivalence), and this
and ^-equivalence are much easier to deal with than j/-equivalence. The

question of stability can also be reduced to one concerning ^-equivalence,

which explains why Mather could make such good progress on that front. For

this and other reasons the theory of functions and varieties is better developed
than that of general mappings.

The volume under consideration is the second in this series concerned with
singularity theory but can be read independently of the first, although it clearly

deals with more advanced topics.   Given its authorship, it has a tendency to
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focus, understandably, on the substantial contributions of the Moscow school
and reads rather like a collection of articles of the type which appear in the

Russian Mathematical Surveys. The first chapter is the one I found most useful

and deals with the classification of functions and mappings. It starts with a

discussion of functions on a manifold with boundary, including versal unfold-

ings and their topology (the basis for the relative homology of a nonsingular

fibre, intersection forms, monodromy, etc.). There is then a discussion of the
complete intersection case. The classification of simple singularities is due to

Giusti (although much of it is embedded in earlier papers of Mather on smooth

stability) and is given. The local topology of complete intersection singularities

is then discussed. The initial results are due to Hamm (around 1970), and a
number of central results on monodromy due to Ebeling are stated. (It would

be hard to better the book by Looijenga [4] as a fuller reference to this large

area.) There follows a discussion of projections of curves and surfaces to the

plane and an important generalisation to projections of complete intersections
due to Goryunov. There is also a discussion of mappings from the line to the

plane and the plane to 3-space, with lists of the corresponding simple singu-

larities and invariants, due in the latter case to Mond. The authors provide a

treatment of functions with nonisolated singularities, an important area devel-
oped by Siersma and Pellikaan, which provides useful insights into the structure

of the space of functions with isolated singularity. They then describe how to
obtain vector fields tangent to various bifurcation varieties. Concrete examples
of these include caustics and wavefronts, and indeed Arnold initiated the study

of such vector fields while solving the problem of describing generic wavefront

evolution in 3-space [1]. The chapter finishes with results concerning diagrams

of mappings.

The second chapter deals with applications of the theory of functions via

Legendre, Lagrange, and Maxwell sets, with the first two being covered rather

briefly. Key examples of Legendre singularities are duals and wavefronts. For

Lagrange singularities think of caustics and the set of critical values of the Gauss
map of a surface in 3-space. Maxwell sets arise as shock waves associated to
certain PDEs. As one might expect, these applications gain from the results

developed within singularity theory. Conversely, however, they help mold the

development of the subject. (I was somewhat surprised at the brevity of the
treatment of Legendre and Lagrange singularities; there is a fuller treatment in
a book of the same series [3] on symplectic geometry. Nevertheless, a newcomer

to the subject would be rather misled by the relative amounts of space devoted

to these three topics in this volume.) The chapter ends with a discussion of

gradient vector fields. One of the reasons for Thorn's original classification of

functions was a desire to describe the bifurcations of gradient vector fields.
However, these bifurcations are not enumerated by listing versal unfoldings of

the corresponding functions; and, following work of Guckenheimer, Vegter, and

Khesin, one can see that the general picture is a good deal more complicated
than that originally envisaged by Thom.

The third chapter focuses on certain spaces of objects containing (open) sub-

sets possessing "good" properties. (As the simplest example consider the set

of real polynomials of even degree, and as the "good" subset those which are
positive away from zero.) One of Arnold's many interesting insights is the as-

sertion that "good" states are fragile. This is best explained by an example. If
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in the plane the boundary between good and bad states was given by a cuspidal

cubic, then one would expect at the cusp point that the locally slim subset of the
plane lying inside the cusp would be the good side of the divide. A number of

interesting (general) examples are given, together with information concerning

the nature of the boundary and its singularities.
The fourth chapter is concerned largely with results of Vasil'ev concerning

ramified integrals and Picard-Lefschetz formulae. The basic idea is to integrate

forms over a cycle which varies in a family; if this family forms a closed path in

some parameter space, we run into the notion of monodromy. The classical sit-

uation here is that determined by a pencil of hyperplane sections of a variety in

some projective space. Finitely many of these sections will be singular/tangent.

When the corresponding points on the projective line parametrising the pen-

cil are deleted, we obtain a fibration over their complement whose fibres are

the nonsingular sections. We can lift a closed path in the base space to obtain

an automorphism of some fixed nonsingular section and consider its action on

the homology. The result is determined by the associated Picard-Lefschetz for-

mula. One of the first extensions was to the study of singularities of functions,
and this has substantial applications to the theory of oscillatory integrals due to

Arnold, Varchenko, and many others. In this chapter the corresponding theory

for integrability of algebraic domains (a problem apparently first considered

by Newton), for ramification of solution of hyperbolic equations, and for inte-

grals of ramified forms are given. The prerequisites are a little wider than in

previous chapters and the connection with mainstream singularity theory less
pronounced, although the results are clearly of great interest.

The book closes with an interesting discussion of real deformations of sin-

gularities. Much of the motivation for singularity theory arises from what one
might term "real" applications, for example, the problem of describing the caus-
tics of a generic wavefront or (all of) the outlines of surface in general position.

The key then concerns singularities of real-valued functions and mappings. On
the other hand, the theory has its most elegant formulation in the complex case.

The advantages of the complex numbers over the reals reduce to the usual one,

namely, that the complement of a point in the complex plane is connected.

So, for example, one standard way of studying a degenerate singularity is by
deforming it into a collection of nondegenerate singularities. (For a function

these are simply Morse singularities.) Given that the degenerate deformations
form a hypersurface in the space of all such, one expects any two good defor-

mations over the complexes to have the same form, since they can be joined

by a family of good deformations. Over the reals, however, this is no longer

true. (At a trivial level the polynomial x2 can be deformed over the reals to
one with two real or two complex conjugate roots: over the complexes these

are indistinguishable.) The main results in this section are concerned with the

search for local Petrovskii lacunas. Here we take a function, versally unfold

it, and think of the resulting discriminant as a wavefront; a component of the
complement is a lacuna if the solution of the corresponding hyperbolic equation

is nonsingular. The chapter lists results on the number of local lacunas for all
simple singularities and all singularities of corank 2 and Milnor number at most
11. The authors also describe a computer algorithm used to determine some of
this information.

The notion of an encyclopaedia of mathematical sciences is initially very
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attractive. The current work would certainly prove very useful to experts in the

field. I would not, on the other hand, describe it as an introduction to the subject
or a useful general reference for the interested reader. In particular, the last two
chapters are rather technical (I certainly found them more difficult to read than

the first three). There are of course no proofs (wouldn't my undergraduate class

be pleased!), but proofs do go a long way towards explaining the reasons why

results hold. In fact this really is a collection of (nicely written) survey articles
whose topics lie within, or are adjacent to, singularity theory, and as such I can

heartily recommend it.
Finally I feel that I must mention the price. This is a Springer volume of

235 pages weighing in at $89. I am glad I had the book to review, as it is a

valuable addition to my bookshelf. I doubt that I would have parted with $89
for it. I wonder how much longer we academics are going to continue to create

our own resource crises? Publishing is an activity we dominate: we write the

papers/books, we do the refereeing, and we do the buying. And we still allow

publishers to charge us exhorbitant prices for the privilege of having our work
in our own libraries.
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This book deals with linear integral equations of the following type:

(1) u(t)= [ A(t-s)u(s)ds + f(t),        t>0
Jo


