
BOOK REVIEWS 291

3. G. Gripenberg, S. O. Londen, and O. J. Staffans, Volterra integral and functional equations,
Cambridge Univ. Press, Cambridge, 1990.

4. R. K. Miller, Linear Volterra integrodifferential equations as a semigroup, Funkcial. Ekvac.

17 (1974), 39-55.

5. J. Priiss, Linear hyperbolic Volterra equations of scalar type, semigroup theory and applica-

tions (Ph. Clément, S. Invernizzi, E. Mitidieri, and I. Vrabie, eds.), Dekker, New York, 1989,

pp. 367-384.

6. M. Renardy, W. J. Hrusa, and J. A. Nohel, Mathematical problems in viscoelasticity, Pitman

Monographs Surveys Pure Appl. Math., vol. 34, Longman Sei. Tech., Harlow, Essex, 1988.

G. Da Prato
Scuola Normale Superiore

E-mail address : dapratoOvax. sns. it

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 31, Number 2, October 1994
©1994 American Mathematical Society
0273-0979/94 $1.00+ $.25 per page

Wulff construction, A global shape from local interaction, by R. Dobrushin,

R. Kotecky, and S. Shlosman. American Mathematical Society, Providence,
RI, 1992, ix + 204 pp., $130.00. ISBN 0-8218-4563-2

What is the shape which has the least surface area for the volume it encloses?
We all know the answer to that question—a round ball, in Euclidean space

of any dimension. This is an isoperimetric inequality, a formula giving a lower

bound on the («-l)-dimensional area of the boundary dS of an «-dimensional

region S in R" (or more generally of a piece of «-dimensional minimal surface

S in Rm+") in terms of the «-dimensional volume of S. The theorem not only

gives a precise bound but says it is uniquely obtained by a single shape. See
Osserman's review [O] for some of its history.

The Wulff construction answers the same question with area replaced by

surface energy: what is the shape which has the least surface energy for the
volume it encloses!

The construction itself can be stated succinctly: Given any function O from
unit vectors in R" to R, the Wulff shape is

W* = {x 6 R" : x ■ n < <D(n) Vn € R" with |n| = 1}.

The description of W& used by materials scientists is very geometric, rather than
formulaic, and goes approximately as follows: Plot the points 0(n)n for all unit
vectors n (this is the " y plot", since what is here called O—the terminology

of geometric analysis, where O is a "parametric integrand"—is often called y
in the materials science literature; to confuse matters further, it is often called

a in the physics literature, and in this book it is t) . Now for each point on
this plot, construct the plane perpendicular to the line from that point back to

the origin and throw away everything beyond that plane. What is left after all
those half spaces are discarded is W® . See Figure 1.

In applications, <I>(n) is taken to be the surface free energy per unit area
(a.k.a. surface tension) for a plane segment having oriented normal n separating

one material from another.   So, if one has a chunk S of one kind of stuff
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Figure 1. The Wulff construction for a fanciful (non-

physical) O.

surrounded by a medium of something else and 5 has an exterior unit normal

ns(x) for almost all x in dS, then

<D(dS)=/      <t>(ns(x))djrn-lx

is the total surface free energy of 95. If one or the other of the materials
has an internal order, like crystals do, then different directions for surfaces are

physically different, giving the n dependence (the crystal axes and the materials

must be fixed in order to define O). If one rotates the crystal(s), one has to

rotate W& ; and if one exchanges what is regarded as "behind" the surface with

what is "in front", one reverses the orientation and thereby centrally inverts

W<¡,. O also depends on the temperature.

If W® is a compact set of positive volume, then among surfaces bounding

regions of the same volume, the boundary of W® is the unique minimizer for

the integral of O, up to translations [W, B, H, T, F, DP, FM, BM]. If it is not a
compact set of positive volume, then no minimum for the integral of <I> exists

among compact regions of a given volume.1 The Wulff shape is often called the

1 The reader may wonder if we do not have to put some condition on <t> in order to be able to

integrate it over, say, a rectifiable set; but in proving this result we can restrict ourselves without

loss of generality to continuous 4> and even to the convex function <I>C with the same Wulff shape

as <P (i.e., <î>°(ii) = sup{x -n: x e W<¡>} and <Pc(p) = |p|G>c(p/|p|)) ■ Also, if W9 is compact with

positive volume, then one can pick an interior point a of the set and replace 4> by its translation

í>a defined by <Da(n) = <I>(n) - a • n ; the Wulff shape of Oa is then the translation by a of W& ,

and 4>a is positive on all unit vectors. According to the Stokes Theorem, the integral of <t>a over
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equilibrium crystal shape because of this property of having the least surface

energy for the volume enclosed. In fact, O is often experimentally determined
by looking at shapes under the microscope and working backward, although as

the authors note, "It is actually not easy to bring a crystal into equilibrium with
the surrounding vapour or melt...relaxation times are very long even for tiny

crystals."
The Wulff construction has connections to analysis, geometry, statistical me-

chanics, physics, materials science, and crystallography and has been, directly
or peripherally, a subject of research in these areas for a hundred years. I have
been told that it was devised independently by G. Wulff, P. Curie, and J. W.
Gibbs and is sometimes called the Gibbs-Curie-Wulff construction.

The contribution of this book to the long literature is that it provides the
proof in the context of the Ising ferromagnet model of statistical mechanics

that the expected shape of a "droplet" of fixed total spin in a finite square in

R2 is essentially the Wulff shape W<j> for the surface tension function O given

naturally by the model. In the authors' words, their objective is thus to "justify

the Wulff construction directly from a microscopic theory." In the process

it extends the Bonnesen inequality in R2, a result independent of statistical

physics. (See [G] for another recent extension and [P] for related work on the

Wulff shape in the two-dimensional Ising model.) All these results use methods

that are strictly two-dimensional.

What this book does

Let Z2 be the two-dimensional integer lattice, and let TN = Z2/NZ2 ; let

Qn — { -1, 1} Tn be the set of all configurations. That is, take a two-dimensional

N x N square lattice with periodic boundary conditions for everything, and
mark each site with a plus sign or a minus sign. Those sites with a plus constitute

one phase, and those with a minus another phase. For fixed N, require a fixed

excess of positive sites Rn ■ Limits for TV —► oo are taken with sequences such

that i?jv/7Y2 -» p for some prescribed ratio p. See Figure 2.
An energy of interaction between pairs of sites s\, $2 is given by a function

U{si—S2). The distance between sites is given by the norm on 7V introduced

by |f| = \tl\ + \t2\ on Z2. The Ising model has U(t) = 1 if \t\ = 1 and
0 otherwise (i.e., only nearest neighbor interactions). In their introduction,

the authors formulate results for the case of general finite-range ferromagnetic

(nonnegative, even) potentials, but for proofs in the remaining chapters they

consider only the case of the Ising model. They sketch the extension to general
ferromagnetic models at the end of the final chapter.

The authors study the thermodynamic limit of canonical ensembles that are
simultaneously rescaled to a unit volume. They get a limiting measure, with

clear-cut regions of opposite phases separated by the boundary of the Wulff

shape. Alternatively, they represent the microscopic configuration in terms of

contours and prove that with probability nearly one there is only one long con-

tour in a configuration and that this contour does not deviate too much from

the Wulff contour and separates opposite phases. In the regions distant enough

any surface without boundary is the same as the integral of 4>, and for surfaces with the same

boundary the difference in integrals depends only on the boundary. Thus, if we want to, we can

also assume that i> is positive on unit vectors. W is the support function of W& [R], and 4>(pc

is the unit ball for the dual norm (O0)* .
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Figure 2.   A configuration and its contours (adapted

from Dobrushin et al., Figure 1.4).

from the contour, they show local variables behave as if in pure phases. (The
authors give very precise but lengthy formulations of these statements.)

The authors throughout try to find natural general formulations and to ex-

posit the basics (including well-known results on Ising models) so that the book

is quite self-contained. The nature of the approach is indicated by the following

brief summary of the chapters. Chapter 1 : introduction, precise statements of
two theorems, plan of the proof; Chapter 2: a generalization of the Bonnesen in-

equality; Chapter 3: accurate upper bounds on probabilities of large deviations

of the sum of spins; assorted limit theorems; Chapter 4: results about surface

tension such as the stability of the computed surface tension with respect to a
change of the form of the volume (it turns out that the surface tension is an

elliptic parametric integrand); Chapter 5: results about large contours; Chapter
6: proof of the main results.

Some other current mathematics related to the Wulff shape

Recent continuum proofs of the Wulff construction [F, DP, FM, BM] show

that the subject is as rich as the usual isoperimetric inequality. Particularly
noteworthy is the Brothers and Morgan proof, which manages to reduce the

proof to the arithmetic-geometric mean inequality by a clever choice of map
from an arbitrary region of the correct volume to W®. Wulff shapes also have

been shown to arise from jamority voter models [GG].
The Wulff construction ties in to several different areas of mathematics, as

is evident from the history of its proofs and the range of mathematicians who
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have been involved with it. One area is minimal surfaces and related geometric

analysis shading into applications to materials science—one can study surfaces
that are stationary for surface energy rather than for surface area and surface-

energy-driven motion problems (such as analogs of motion by mean curvature,

models for dendritic crystal growth). A possible entry into this literature is the
text [M] and the survey article [TCH]. The mixed-volume, Minkowski-metric

approach is represented by the work of Gage (e.g., [G]) on curves in the plane;

in R2, <S> gives rise to a Minkowski (Finsler) metric by setting F on a unit
tangent direction equal to Q> on the corresponding exterior normal direction.

Also, macroscopic limits of stochastic Ising feromagnetic models in R" with

long range interactions and Glauber dynamics were studied recently in [KS],

which showed in the limit the development of a sharp interface moving by

mean curvature times an explicitly determined constant (surface free energy

becomes isotropic in this model).
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In 1935 H. Whitney introduced the concept of a matroid, which unifies many

configurations studied in pure and applied mathematics—in particular, in al-

gebra, geometry, combinatorics, and optimization theory. Ordinary matroids

may be viewed as an abstraction of finite geometric configurations which are
embedded into some vector space over a field. In 1978 oriented matroids were

introduced by R. G. Bland, M. Las Vergans, J. Folkman, and J. Lawrence as

combinatorial abstractions of finite geometric configurations in vector spaces
over some ordered field. Since oriented matroids, as well as ordinary matroids,
are important in many areas—as in algebraic and computational geometry com-

binatorics, topology, operations research, and chemistry—researchers in various
fields were led to questions concerning oriented matroids. The purpose of the

present book is to summarize the theory of oriented matroids developed thus
far. Technically, the book is organized as follows:

Chapters I and II serve to motivate the definition of oriented matroids by
means of connections to several branches of mathematics and natural sciences.

The diverse mathematical theories all lead to cryptomorphic axiom systems for
oriented matroids; the equivalence of these definitions is proved in Chapter III.
It should be remarked that the proofs are not simple.

Chapters IV and V are devoted to topological representability of oriented
matroids. The main results of these two chapters is the topological representa-

tion theorem which is already proved in the basic paper by J. Folkman and J.

Lawrence concerning oriented matroids. It states roughly that the loop-free ori-
ented matroids correspond to arrangements of generalized hyperplanes which

are obtained from affine hyperplanes by certain topological deformations.

In Chapter VI arrangements of pseudolines are studied, and it is shown that
they correspond to reorientation classes of simple orientable matroids of rank 3.
Many examples are presented which, on the one hand, are not trivial but which,
on the other hand, are simple to illustrate graphically. Moreover, some con-
nections between oriented matroids and Griinbaum's exposition of pseudoline
arrangements are described.


