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The book has a captivating title: Billiards. What are billiards? The authors

give their definition in the extension of the title; they are dynamical systems

with impacts, i.e., with infinitely short interactions. The interacting bodies

do not change their positions in the impact, but their velocities are changed

instantaneously.
Mathematically speaking such dynamical systems are concatenations of flows

and diffeomorphisms. We have a vector field V in the phase space M c RN .

Most of the boundary d M splits naturally into two parts: d~M where V

points outside of M and d+M where V points inside. The description of the

dynamical system is completed by a (local) diffeomorphism O: d~M —> d+M.
The phase point follows the vector field V until it leaves the phase space M,

at which time it is returned into the phase space by the diffeomorphism O. In

[W1 ] such concatenations were given an ad hoc name of flows with collisions.

One can now redo the Dynamical Systems Theory for such concatenations, but

the interest of this project is not at all clear. The Dynamical Systems Theory is

more about special classes of systems and typical (characteristic) phenomena.
The introduction of the book contains a variety of examples of mechanical

systems with impacts. We also find there a fair amount of history of the subject.

This is a very well-written chapter which will attract a wide audience.

Elastic collisions can be understood as a natural extension of the principle
of least action. This variational principle is used as the basis of the dynamics

of systems with ideal holonomic constraints, i.e., when the positions of the

bodies are restricted to a submanifold in the configuration space. Another way
to introduce holonomic constraints is to consider a strong potential force field
pushing the system toward the submanifold representing the constraint. Taking

the strength of the field ("the modulus of elasticity") to infinity, we obtain the

usual Lagrange equations. In Chapter 1 the authors look at systems with impacts

as mechanical systems with one-sided constraints and derive the laws of elastic

and inelastic impacts from the above limiting procedure in the full equations

of motions of the "freed" system. They call it the genetic method.

Chapter 2 is devoted to the periodic trajectories in the Birkhoffs billiard,
i.e., the system of a point particle moving in a (convex) domain in K2 and

colliding elastically with the boundary. If we consider the map "from collision

to collision", we obtain an area-preserving twist map. It turns out that the length

functional of the Birkhoffs billiard has a counterpart for any area-preserving

twist map.

The authors give a detailed proof of the existence of a multitude of periodic

orbits, a result going back to Birkhoff This subject has an interesting history.

Birkhoff gave two proofs of the existence of these periodic orbits. One was
based on the Poincaré's Last Geometric Theorem, and it was readily applicable
to area-preserving twist maps.  The other was based on the variational argu-
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ment, and Birkhoff acknowledged that he did not know how to generalize it to

twist maps. Birkhoffs account of the variational method ([Bir], page 362) is
sketchy (probably because of its perceived limited scope), and it is not clear

to us whether he considered the space of inscribed polygons with the vertices
ordered as in a rotation or with an arbitrary ordering. The authors consider

for every number of collisions and every number of rotations the large space

of configurations without regard for the ordering of the collision points. (It

is a nice exercise to show that the maximal polygon in each of these classes
has, by necessity, ordered vertices.) The monotonicity of the Birkhoff orbits is

critically important for the structure of their limits, invariant curves, or Cantor
sets. In the authors' approach the ordering (monotonicity) of the orbit is lost,
but it prepares us for the generalization to the multidimensional case (briefly
described in the chapter), where we lose the monotonicity anyway.

Contrary to Birkhoffs emphasis on the nonvariational methods, the varia-
tional approach proved very fruitful. It was developed by Mather in his theory

of Cantori for measure-preserving twist maps. Aubry obtained the same results

independently starting from a model in solid state physics. There is an excellent

survey of the Aubry-Mather theory by Bangert [B] (where the early papers of
Hedlund are also brought to light).

The rest of the chapter is devoted to the connections between the multipliers
of the periodic orbit and the character of the respective critical point of the
length functional. The connections between the dynamic and geometric proper-
ties of the periodic orbits are further expounded in Appendix II. The criteria of
stability of a two-link billiard orbit are derived, and this is the first of the three
derivations in the book. (Let us warn the readers that, contrary to the remark

made after Proposition 4 on page 71, the proposition as formulated does not
hold in the general case of arbitrary curvatures.)

In Chapter 3 the authors discuss Lyapunov's theory of stability and Hill's
method. The genetic method comes back here. It allows the derivation of sta-

bility criteria by replacing the limit impact with prelimit differential equations.
The benefits of such an approach are not so obvious. Our experience is that
straightforward calculation of the monodromy matrix, if possible, is not more
cumbersome, [W2].

Going beyond periodic orbits of a dynamical system, we enter the vast terri-
tory of global behavior, be it integrable or nonintegrable.

Chapter 4 is devoted to integrable billiards. It starts with the discussion of

the billiards in an ellipse and their connection with the geodesic flow on the

triaxial ellipsoid. The authors' approach is the following. The geodesic flow is
integrable, and the billiard system is its limit as one of the axes goes to zero.

One can then derive information about the billiard system from the formulas
for the geodesic flow. In particular, the action-angle variables for the billiard
are found and the frequencies of the quasiperiodic motions calculated. This
is an analytic approach which allows a straightforward generalization to higher

dimensions. We would like to describe briefly here the work of Kolodziej [K],
who found several purely geometric ways to determine the frequencies. One

of them is related to Poncelet's Theorem. The twist map corresponding to

the elliptic billiard has a continuous family of invariant curves. The invariant
measure (area) for the twist map induces invariant measures (arc length) on

the invariant curves.  A mapping of a circle which preserves an arc length is
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a rotation. Hence, if we know the invariant arc length, we can immediately

calculate the rotation numbers (frequency ratios). Geometrically the invariant
curves (not all) can be represented by ellipses confocal with the boundary. For

any such ellipse, let us consider the mapping of the boundary onto itself, which

takes one endpoint of the orbit segment, tangent to the interior ellipse, into
another. In view of the presence of the invariant arc length for this mapping,
we get Poncelet's Theorem for this special pair of conies (for a rotation either

every orbit is periodic or every orbit is dense, which is exactly what is claimed

in the Poncelet Theorem). Kolodziej made two observations. On one hand, for

a pair of (in general nonconcentric) circles, one inside the other, the invariant
arc length for the mapping has the obvious density (the inverse of the distance

to the point of tangency with the inner circle). On the other hand, any two

ellipses (one of which is inside the other and not necessarily confocal) can be
mapped onto two circles by a projective transformation of the plane (Kolodziej

gives a simple geometric construction of the projective map). The claim of the
Poncelet Theorem remains valid under the projective transformation, so it is

sufficient to establish it for the pair of circles. The invariant arc length for the
pair of circles will be transported to the invariant arc length for a general pair
of ellipses.

In Chapter 5 nonintegrability is the subject. The brief discussion of ergodic
billiards in Chapter 5 is outdated. The theory of polygonal billiards by Kerck-
hoff, Masur, and Smillie can be found in [KMS]. New results on (locally) convex

billiards with hyperbolic behavior in all of the phase space can be found in [W3]

and [D]. The surveys [ChS, W4, and LW] present some of the new approaches
to systems with elastic collisions which are hyperbolic in all of the phase space.

It is interesting to note that conservative systems with good stochastic properties
in the entire phase space are exceptional and the known examples are mostly

those of systems with elastic collisions. One explanation is that the discontinu-

ities introduced by the multiple or "grazing" collisions may free us immediately

from the consequences of the KAM theory, which excludes even the ergodicity
of the system.

Overall, it is a stimulating and enjoyable book. However, it is not a mono-

graph on the subject; the authors take us only where they want to go. The focus

is on the authors' contributions and, more generally, on results of the Russian
school. We get a book which should be read and enjoyed but not necessarily
relied on as a comprehensive source.

It is our point of view that there is no "theory of billiards". Billiards are

studied by the same methods that can be applied to much larger classes of
dynamical systems. At the same time it is striking how influential the study of
billiards actually was. The following two cases stand out.

Birkhoffs work on billiards in a plane convex domain and Hedlund's work

on geodesies on tori were the precursors of the Aubry-Mather theory of Cantori.
Sinai's work on the Boltzman gas of hard balls, or on what is not known as

Sinai's billiards, had a crucial influence in the development of the Pesin theory,
which translates the infinitesimal picture furnished by the Oseledet's Multiplica-

tive Ergodic Theorem into the information about the dynamics of nonlinear

systems. In the future one may expect a unified theory of piecewise differen-

tiable dynamical systems with hyperbolic behavior, covering both conservative
and dissipative cases.
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Finally, let us draw the attention of the readers to a recent very interesting
survey of billiards by Tabachnikov [T].
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The fact that fairly simple dynamical systems can exhibit remarkably rich
complexity in their qualitative behavior may have been known before Poincaré,
but it was he who first discussed one of the archetypal examples in an essay on
the stability of the solar system written around 1890.

This kind of behavior (the name "chaos" is currently very much in vogue)

occurs in a very simple model problem illustrated in Figure 1. This figure

describes the behavior of a differentiable, invertible self-map / of the plane R? .


