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Finally, let us draw the attention of the readers to a recent very interesting
survey of billiards by Tabachnikov [T].
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The fact that fairly simple dynamical systems can exhibit remarkably rich
complexity in their qualitative behavior may have been known before Poincaré,
but it was he who first discussed one of the archetypal examples in an essay on
the stability of the solar system written around 1890.

This kind of behavior (the name "chaos" is currently very much in vogue)

occurs in a very simple model problem illustrated in Figure 1. This figure

describes the behavior of a differentiable, invertible self-map / of the plane R2.
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The point p is fixed under /, and in a small neighborhood of p coordinates

can be chosen so that f(x, y) — {ax, by) where a > 1 and 0 < b < 1. In
the neighborhood where this formula is valid it is clear that the x- and y-axes

are invariant and that / expands the x-axis while contracting the y-axis. It

follows that if we "iterate" / on an interval / in the x-axis containing p, we

will obtain an invariant curve
oo

wu{p) = \jfn{i)

called the unstable manifold of p . The stable manifold Ws(p) is defined sim-

ilarly using f~x and an interval in the y-axis.

As these curves leave the neighborhood of p where the linear representation

of / is valid, they may cease to be straight lines and can in fact bend and cross

at a point q as shown in Figure 1. It is easy to see that

lim f-"(q)=p    and      ]imf(q)=p.
«—»oo n—»oo

The point q and other points with this property are said to be homoclinic

points associated to the fixed point p. They are called transversal homoclinic
points because they are the points of intersection where the stable and unsta-
ble manifolds cross as opposed to being tangent. There are some remarkable

consequences of this simple situation. Since q is a point where Wu(p) and

IVs (p) cross and these curves are left invariant by /, every point f"(q) of the

orbit of q must be a point where these curves cross each other. At the same

time the curves Wu(p) and IVs(p) have no self-intersections. One can show

that if we parameterize Wu(p), say, by the real numbers, then every point in

rVu(p) is a limit of a sequence of points in Wu(p) which tend to infinity in the

parameterization. It is easy to see this for the point p , since {/"(<?)} is such
a sequence. It is an interesting exercise to sketch more of Wu{p) and Ws(p)

than is shown in Figure 1.

W (p)

Figure 1



BOOK REVIEWS 303

The richness of this example is attested to by the fact that much of the book
of Palis and Takens is centered around it. More precisely the book focuses on
the dynamics of maps in a smooth one-parameter family fß with parameter
ß G [0, 1] which starts at ß = 0 with very simple behavior where Wu(p) and

Wi(p) intersect only at p and ends with the example / above when ß = 1.

An early chapter of the book is devoted to an important discovery of Smale

that often much of the dynamical complexity inherent in transversal homoclinic

points can be described very nicely with what is called symbolic dynamics. As
an example, consider the space Z of bi-infinite sequences of the "symbols" 0

and 1, i.e., all sequences of zeros and ones indexed by the integers. This space is

a countable Cartesian product of the discrete space consisting of the two points

0 and 1. Hence, it is easily seen to be compact and metrizable. A natural
homeomorphism of X is the shift map er : E -> Z which shifts all the symbols

in a sequence one place, say, to the left. (So the nth element of a sequence in
Z will be the (« — l)st element of its image under a .)

Much of the dynamics of a is quite easy to understand. For example, there

are two fixed points: the sequence of all zeros and the sequence of all ones.

Periodic points correspond to periodic sequences. There are points with dense
orbits under a (the reader may want to attempt the not-too-difficult exercise

of exhibiting one). Associated to the fixed point whose sequence consists of all

zeros are points with the same limit properties as p and q described above.

These are precisely with those sequences {an} for which there is an integer N

with a„ = 0 for all n > N or n < -N, and they are naturally enough called
homoclinic points.

The remarkable discovery of Smale was that for examples like / described
above (and, in fact, much more generally) there are neighborhoods U and

V of p and q respectively and an iterate /" of / with the property that

dynamics of those points whose orbits stay in these neighborhoods is identical
to the dynamics of the shift map a . More precisely, if

oo

A=   fi   fk"(UuV),
k=—oo

then there is a homeomorphism h : X —> A such that ho a = foh . Such an h

is called a topological conjugacy, since a = h~l o f" o h . It is easy to see that h

carries dynamically significant sets (fixed points, periodic points, dense orbits,
homoclinic orbits, etc.) from one system to sets of the corresponding type for
the other system.

This material is available in many graduate level texts on dynamics, but two
other important topics treated by Palis and Takens are not readily available
outside their original sources. The first of these is a result of Newhouse dealing
with the attracting periodic orbits or sinks. A sink is a periodic point x with
the property that for every y in some neighborhood of x it is the case that
lim„_oo fnp(y) = x. An optimistic view, commonly held, prior to 1970 was

that only artificially constructed examples could have infinitely many sinks and,

just as a smooth real-valued function on a compact manifold typically has only
finitely many critical points, perhaps diffeomorphisms would typically have only
finitely many sinks. (This analogy is not as farfetched as it may initially seem,
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because a large class of diffeomorphisms can be constructed by flowing along

the gradient lines of a real-valued function. For these systems the sinks are
precisely the maxima of the function, which are, of course, critical points.)

A series of results of Newhouse showed that this optimism was not well
founded. The key example is close to the one described above and illustrated in

Figure 1 but with a crucial difference. In this figure the point q is a transversal
homoclinic point, i.e., a point where the curves Wu(p) and W*(p) cross and are

not tangent. Newhouse considered a point where they intersect and are tangent,

i.e., a tangential homoclinic point. He showed that if, in the example above,
the expanding and contracting factors a and b have product less than 1 and

q is a tangential homoclinic point, then close to / there are diffeomorphisms
with infinitely many sinks. More importantly, there is a whole open set (in

the space of diffeomorphisms with an appropriate topology) with the property
that typically (in the sense of Baire category) diffeomorphisms in this set have

infinitely many sinks. No nice result like the one for critical points of real-valued
functions is possible.

The second important topic treated by Palis and Takens draws heavily from

their own research in dynamics. It is the very important question of how this

complex dynamic behavior can be created. More precisely, suppose that we

consider not just the one function / illustrated in Figure 1 but also a smooth

one-parameter family, fM, with parameter /i e [0, 1] which starts at ß - 0
with very simple behavior where Wu(p) and IVs(p) intersect only at p and

ends with f-f.
At how many parameter values must there be a bifurcation, i.e., a qualitative

change in the dynamics of the function on the set A which is the closure of

homoclinic points? The answer to this question, too, is intimately tied up with

homoclinic tangencies (which must occur at some parameter values). There is
an interesting new ingredient, however, the Hausdorff dimension of the set A.

It turns out that if one investigates the set of parameters B where a bifurcation

occurs near a particular parameter value ßo where f^ has a homoclinic tan-

gency when ß = ß0 and satisfies some reasonable technical assumptions, the
relative density of B near ß0 is dependent on this Hausdorff dimension. More

precisely, if this Hausdorff dimension is less than 1, then

limm(Bn[ßo,ß])=0_
ß-*ßo ß- ßo

while if the Hausdorff dimension is greater than 1,

]imm(Bn[ß0,ß])>^

H->Po ß - ßo

where m( ) denotes Lebesgue measure.

This is a fascinating result showing a surprising relation between the rela-
tive density of the bifurcation set and the dimension of the set on which the
dynamics is occurring for one particular parameter.

The book by Palis and Takens is an interesting monograph on this collection

of ideas.  It begins with material often covered in graduate texts but quickly
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moves to the exposition of ideas only available in the original sources. It would

be quite suitable for an advanced graduate level course in dynamics and bifur-
cation theory.
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In the beginning ( 1834), Hamilton created the Hamiltonian system and there-

by quantified light. (Well, actually, Hamilton was anticipated by Poisson, La-
grange, and others (see [1, p. 264]), but let us not quibble.) Hamilton's equations

might have remained a somewhat esoteric curiosity, of interest to specialists in
optics and mechanics, were it not for their sudden and unexpected starring role

in Schrödinger's wave mechanics theory of quantization. (In hindsight, it is

remarkable how close Hamilton came to quantum mechanics, lacking only the

physical motivation for introducing a wave theory of matter!) Initially, Hamil-

tonian systems were always written in terms of canonical coordinates, the /?'s

and q's of classical mechanics; indeed, for basic quantization, this reliance on

a particular coordinate system was essential. Moreover, an old theorem of Dar-

boux (originally stated for one-forms) implies that one can always find canonical
coordinates, so (at least in the finite-dimensional framework) there was initially

no reason to dispense with these canonical coordinates.

In recent years, though, coordinate-free approaches to Hamiltonian mechan-

ics have finally come into their own. In part, this process was motivated by

the discovery of mechanical systems (the simplest being Euler's equations for

the rigid body) which do not naturally fall into the traditional framework (the
classical Hamiltonian approach to the Euler equations being rather forced). A

second important factor was the discovery of important infinite-dimensional

Hamiltonian systems, particularly the equations of fluid mechanics and of soli-

ton theory, for which a general Darboux theorem is not so apparent. In both

cases, the introduction of Hamiltonian structures, both degenerate and of vari-

able rank, necessitated a reassessment of the foundations of the subject. There
arose two different, essentially dual approaches, each relying on a different ob-

ject as the fundamental basis of Hamiltonian mechanics. The earlier approach

is via the geometrical theory of symplectic mechanics, in which one introduces
a closed, nondegenerate two-form co—the symplectic form—which is a section

of f\2T*M, where M denotes the underlying phase space. The second, dual

approach is to rely on the Poisson bracket as the primary object of interest.
Geometrically, this amounts to the introduction of a nondegenerate bivector

field O, which is a section of A2 TM. The closure condition of the symplectic
two-form, which is equivalent to the all-important Jacobi identity for the associ-


