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moves to the exposition of ideas only available in the original sources. It would

be quite suitable for an advanced graduate level course in dynamics and bifur-
cation theory.
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In the beginning (1834), Hamilton created the Hamiltonian system and there-
by quantified light. (Well, actually, Hamilton was anticipated by Poisson, La-
grange, and others (see [1, p. 264]), but let us not quibble.) Hamilton’s equations
might have remained a somewhat esoteric curiosity, of interest to specialists in
optics and mechanics, were it not for their sudden and unexpected starring role
in Schrodinger’s wave mechanics theory of quantization. (In hindsight, it is
remarkable how close Hamilton came to quantum mechanics, lacking only the
physical motivation for introducing a wave theory of matter!) Initially, Hamil-
tonian systems were always written in terms of canonical coordinates, the p’s
and ¢’s of classical mechanics; indeed, for basic quantization, this reliance on
a particular coordinate system was essential. Moreover, an old theorem of Dar-
boux (originally stated for one-forms) implies that one can always find canonical
coordinates, so (at least in the finite-dimensional framework) there was initially
no reason to dispense with these canonical coordinates.

In recent years, though, coordinate-free approaches to Hamiltonian mechan-
ics have finally come into their own. In part, this process was motivated by
the discovery of mechanical systems (the simplest being Euler’s equations for
the rigid body) which do not naturally fall into the traditional framework (the
classical Hamiltonian approach to the Euler equations being rather forced). A
second important factor was the discovery of important infinite-dimensional
Hamiltonian systems, particularly the equations of fluid mechanics and of soli-
ton theory, for which a general Darboux theorem is not so apparent. In both
cases, the introduction of Hamiltonian structures, both degenerate and of vari-
able rank, necessitated a reassessment of the foundations of the subject. There
arose two different, essentially dual approaches, each relying on a different ob-
ject as the fundamental basis of Hamiltonian mechanics. The earlier approach
is via the geometrical theory of symplectic mechanics, in which one introduces
a closed, nondegenerate two-form w—the symplectic form—which is a section
of /\2 T*M , where M denotes the underlying phase space. The second, dual
approach is to rely on the Poisson bracket as the primary object of interest.
Geometrically, this amounts to the introduction of a nondegenerate bivector
field ©, which is a section of /\2 TM . The closure condition of the symplectic
two-form, which is equivalent to the all-important Jacobi identity for the associ-
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ated Poisson bracket, can be dually formulated as the vanishing of the Schouten
bracket [©, 8] = 0. (The Schouten bracket is the unique natural extension of
the Lie bracket between vector fields to multivector fields.)

In the applications to rigid body mechanics, fluid mechanics, and solitons, the
introduction of degenerate and variable-rank Hamiltonian structures is required.
In both approaches, one maintains the same basic structure but relaxes the
nondegeneracy condition. Thus, to generalize the symplectic formulation, one
relies on a “presymplectic” two-form, which is just a general closed two-form w .
In local coordinates, a (finite-dimensional) presymplectic Hamiltonian system
takes the form

K(x)‘;—’t‘ = VH(x),

in which H(x) is the Hamiltonian function and K(x) is the skew-symmetric
structure matrix defining the presymplectic form w = dxAKdx . Similarly, the
Poisson approach uses a general Poisson bracket or, equivalently, bivector field
with vanishing Schouten bracket. In local coordinates, a (finite-dimensional)
Poisson system takes the form

& o J)VH),
in which the skew-symmetric structure matrix J(x) defines the Poisson bracket
{F, G} = VF - JVG and associated bivector © = 9, A JO,. Of course, in
the nondegenerate (symplectic) case, J = K~!, and the two formulations are
entirely equivalent.

The book under review is devoted to a further generalization, known as a
Dirac structure, that serves to unify and extend both of these approaches. The
basic Qeﬁnition begins by noting that the presymplectic form defines a linear
map K: TM — T*M from the tangent bundle to the cotangent bundle of
the underlying phase space M, whose local coordinate formula is given by
tBe structure matrix K. Vice-versa, a Poisson structure defines a linear map
J: T*M — TM , whose local coordinate formula is given by the dual structure
matrix J. In the latter case, the differential of the Hamiltonian function dH
is mapped to its associated Hamiltonian vector field vy = J(dH) whose flow
defines Hamilton’s equations. In both cases, the graph of the linear map forms
an m = dim M dimensional linear subspace of the tensor product bundle TM®
T*M . A Dirac structure, then, is determined by more general m-dimensional
subspaces of TM ® T*M . The skew-symmetry requires that the subspace be
isotropic with respect to a natural bilinear form. The Jacobi identity or closure
condition requires the vanishing of the “Nijenhuis torsion” of this subspace.
The local coordinate form of a Dirac system then is

K(x)% = J(x)VH(x),

in which both J and K may be degenerate.

Dirac structures were first introduced in the finite-dimensional context by
T. Courant and A. Weinstein, although without significant physical motivation.
In collaboration with I. M. Gel’fand, the author of the present book extended
these constructions to infinite-dimensional systems, with particular emphasis on
nonstandard soliton systems. Here the Hamiltonian system becomes a system
of evolution equations, with the structure matrices J(x) and K(x) replaced by
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differential operators, which may depend on the field variables. An important
example, which does not fit into either the presymplectic or Poisson framework,
is the soliton equation

3utxx

U = Uxxx — T
X

known as the singularity manifold or Krichever-Novikov equation.

Dorfman’s book is a clearly written and comprehensive introduction to the
theory of Dirac structures in the infinite-dimensional context, illustrated by a
number of applications. It begins with a very abbreviated introduction to the
basics of Hamiltonian systems and clearly assumes that the reader is already
quite familiar with the material. The general theory is formulated rather ab-
stractly, so the reader may at first be dismayed by the level of abstraction that
the author has chosen to use. However, this is mitigated by the large variety
of interesting, explicit examples chosen to illustrate the general constructions.
These include the usual suspects from soliton theory, as well as several more
exotic integrable systems.

In finite dimensions, Darboux’s Theorem guarantees that (provided the rank
is constant) canonical coordinates can always be introduced. For the infinite-
dimensional Hamiltonian systems governed by evolution equations, the Hamil-
tonian structure is governed by a differential operator (or its inverse or, in the
general Dirac case, a hybrid operator), and a general Darboux theorem is not
known. (Weinstein’s infinite-dimensional version of Darboux’s Theorem [2]
does not seem to be particularly applicable in this more formal context.) Thus,
there remain many open questions concerning the general structure of Hamilto-
nian differential operators. As the book discusses, only low-order Hamiltonian
operators have, so far, been completely classified; the general classification prob-
lem appears to be very difficult.

A large part of the book under review is devoted to the understanding of
biHamiltonian structures and integrability for a wide variety of evolution equa-
tions. Magri [3] first discovered the striking result that if a system of differential
equations can be written in Hamiltonian form in two different, compatible ways,
then it admits an infinite hierarchy of mutually commuting symmetries and as-
sociated conservation laws in involution. Consequently, if enough of these are
independent, then the system is completely integrable in the classical sense of Li-
ouville. (The converse question of whether every completely integrable Hamil-
tonian system is biHamiltonian has been the subject of recent work of Brouzet
[4] and Fernandes [5], who give obstructions for the existence of a biHamilto-
nian structure in the neighborhood of an invariant torus.) The biHamiltonian
route to integrability was first recognized in the infinite-dimensional context of
soliton equations, but, subsequently, its importance in the finite-dimensional
context has been amply demonstrated. Indeed, the biHamiltonian system asso-
ciated with the Lie-Poisson structure on simple Lie algebras resulting from the
so-called R-matrix theory has been a prime motivation for Drinfel’d’s profound
theory of quantum groups [6]. The precise role of the compatibility conditions
is unexplained, since all known examples of incompatible biHamiltonian sys-
tems are, in a certain sense, even more integrable than the compatible ones
[71.

In summary, I found Dorfman’s treatise clearly written and would warmly
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recommend it to the researcher or advanced student studying the geometrical
approach to infinite-dimensional Hamiltonian systems and solitons.

Note: A month after I completed the text of this review, I was greatly sad-
dened to learn that Irene Dorfman died from cancer. Her untimely death is a
disheartening loss to mathematical physics.
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During the first decades of this century, the investigations of asymptotic os-
cillatory solutions for the Schrédinger equation in quantum mechanics and for
the wave equation in geometrical optics were mainly performed by using the
W-K-B method and the method of characteristics. More precisely, the expected
asymptotic solutions were of the form e/*?X)g(x) where ¢ is classically known
as the phase function and a the amplitude function.

Since then, these methods have spread to the general theory of differential
equations thanks to the research of many mathematicians mainly motivated by
theoretical physics (see, for example, the works of Voros [8] and Sato, Kawai,
and Kashiwara [7] and the references in the book under review).

The basic idea is to perform a “transformation” of the equations, which is
also the idea of the classical Fourier transform (denoted by °): By defining @



