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recommend it to the researcher or advanced student studying the geometrical
approach to infinite-dimensional Hamiltonian systems and solitons.

Note: A month after I completed the text of this review, I was greatly sad-
dened to learn that Irene Dorfman died from cancer. Her untimely death is a
disheartening loss to mathematical physics.
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During the first decades of this century, the investigations of asymptotic os-
cillatory solutions for the Schrédinger equation in quantum mechanics and for
the wave equation in geometrical optics were mainly performed by using the
W-K-B method and the method of characteristics. More precisely, the expected
asymptotic solutions were of the form e/*?X)g(x) where ¢ is classically known
as the phase function and a the amplitude function.

Since then, these methods have spread to the general theory of differential
equations thanks to the research of many mathematicians mainly motivated by
theoretical physics (see, for example, the works of Voros [8] and Sato, Kawai,
and Kashiwara [7] and the references in the book under review).

The basic idea is to perform a “transformation” of the equations, which is
also the idea of the classical Fourier transform (denoted by °): By defining @
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for u belonging to the space S of rapidly decreasing functions in R” (the
Schwartz space), one has

(&) = /e‘“"’f)u(x)dx.

This formula defines an isomorphism from S onto S. Using the inverse of ~,
u can be recovered by the formula:

(+) u(x) = (22)"" / / -9y (y) dy de.

A fundamental result in Fourier analysis is that ~ extends to an isomorphism of
the dual of S, denoted as S’ (that is, the space of temperate distributions on
R"), which turns out to be the smallest subspace of distributions containing L!
and is also invariant by the action of linear partial differential operators with
polynomial coefficients.

When P is such an operator, that is,

P(x,Dy)= Y au(x)DZ, a=(a,...,an) € (NU{0})"
lal<m
D¢ = D3!--- D3 and a.(x) € C[xy, ..., Xn], one may define ﬁ(é, D), the
Fourier transform of P, as the operator obtained by the transformation
.0 0 .
éi - la_xi ) 6_6, ==Xi,

and one gets the relation
Pu(¢) = Pa(¢).
Now, let P(x, D,) be a partial differential operator with C>-coefficients of
the form
P(x,Dy)= Y a.(x)D2.

la|<m

Using (), one obtains

(0 Pu(x) = (2m)™" [[ e Qa(p)y, Eyuty) dy e
where o(P) denotes the total symbol of P, that is, the C*-function in (x, &)
a(P)x, &) = 3 aa(x)(ie)"

la|<m

We call the principal symbol of P the nonvanishing homogeneous term of o (P)
of highest degree. Its degree is also the order of P.

This description of the action of P by (x*) shows that any linear partial
differential operator is actually a particular case of a pseudodifferential operator
which theory was largely developed in the sixties and the seventies (see the works
of Zygmund, Calderén, Kohn, Nirenberg, Lax, Hormander—the references of
the book under review). One of the main features of this theory is that elliptic
differential operators (like the Laplacian or the Cauchy-Riemann operator) are
invertible in the class of pseudodifferential operators.
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More generally, one defines Fourier integral operators, that is, operators
whose action may be described by integrals of the form

Pu(x) = / / ey 0a(x, y, Eyu(y) dy &

where ¢ 1is real homogeneous of degree one with respect to the action of R,
and the amplitude a has an asymptotic expansion of the form

a(x,y,&) ~Y aj(x,y,8),
j=0

a; being C°°-functions on R” x R” x R” — {0} homogeneous of degree (41— j)
in ¢ for a certain A € R.

A theory very similar to this was developed by Maslov [9] in the sixties with
the introduction of the “canonical operator”, which is one of the subjects of
this book.

If one wants to state an invariant theory, the natural framework is the cotan-
gent vector bundle 7*X (the phase space) to the manifold X . The cotangent
vector bundle has a particular geometric structure, that is, a homogeneous sym-
plectic structure: if x = (x;, ..., x,) is a system of local coordinates in X,
(x, &) the associated coordinates in 7*X , the image of the canonical 1-form
> i1 &idx; by the Hamiltonian isomorphism associated to the (nondegenerate
closed) 2-form ¢ = dw is precisely —8, the radial vector field of T*X .

In this situation the principal symbol of a linear partial differential operator
turns out to be a well-defined homogeneous function on 7*X (with respect to
the R.-action). These kinds of ideas still hold for Fourier integral operators
and are the starting point for microlocal analysis.

Let us now point out that differential symplectic geometry is also the natural
framework for classical mechanics, since one of its fundamental concepts is that
of the Hamilton system, that is, first-order linear systems of the type:

ox _9f

ot~ o¢

of  of . . .

31 = "oy’ S being the Hamilton function.

Such questions are studied in this book from another point of view—the au-
thors consider homogeneous objects with respect to the action of R* = R\{0}
on T*X, so it is natural to consider the contact structure of the projective

cotangent bundle P*X = T*X /R* where T*X denotes the symplectic homo-
geneous manifold 7*X with the zero section deleted.

To end this review, let us say a few words about microlocal analysis from the
analytic point of view, that is, Sato-Kashiwara-Kawai’s theory of microdifferen-
tial operators, which has been developing since the end of the sixties [10]. In this
case one considers the homogeneity with respect to the action of C* = C\{0}
on T*X (which is a complex homogeneous symplectic manifold).

Systems of linear differential equations are viewed as coherent modules over
the sheaf of linear differential holomorphic operators—the already classic theory
of Z-modules.

The analogue of Fourier integral operator is the operation called “quantiza-
tion of canonical transformation”.
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Sheaf theory and derived categories are systematically used, since they give
the full understanding of obstruction to properties of the solutions.

The above relation concerning Fourier transform for functions and differ-
ential operators with polynomial coeflicients was generalized in the following
terms: first, one defines an operation for complexes of sheaves on a vector
bundle (viewed as objects of a derived category) which have homogeneous
cohomology with respect to the action of R, . Similarly one defines Fourier
transform for algebraic & -modules, that is, modules over the sheaf of differen-
tial operators with polynomial coefficients with respect to the variables of the
fiber. If the &-module satisfies a certain condition of homogeneity, the sheaf-
theoretic Fourier transform (also called Fourier-Sato transform) exchanges the
“solutions” of the Z-module and the “solutions” of its transform. Here, by
“solutions” we mean once more not only the solutions in the usual sense but
also in the sense of derived categories (for further details we refer to the works
by Katz, Laumon, Brylinski, Verdier, Malgrange, Hotta, and Kashiwara in the
eighties).
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