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Computational number theory has been in the news recently. On March 23,

just before this review was finished, the New York Times printed an article on

the anticipated completion of a project to factor RSA129, a 129-digit integer
proposed as a challenge over fifteen years ago in connection with a cryptographic

method for which cracking the code is equivalent to achieving such a factoriza-
tion. The project may well be completed by the time this review is published.

The calculation uses a sophisticated quadratic sieve method of Pomerance [P]

(or see the final chapter of the book under review) that reduces the number of

arithmetic operations required from the more than 1050 needed to check all
possible prime factors by trial division to a mere 1017 or so.

This illustrates how computers have changed the nature of number-theoretic

computation by making a whole new range of problems feasible and changing

the criteria for judging the usefulness of algorithms. There is not much point in
devising a method that reduces the work involved by even a factor like 1033 if it

merely replaces one utterly impractical hand computation by another. Less dra-

matically, a method of cutting the cost of something like testing irreducibility of
a polynomial over the rationals of moderate degree to a few million operations,

which would be of little help in hand computation, allows a computer to check

many cases in search of an example of some particular kind.

It is worth remarking that the increase in reliability has been as spectacular

as the increase in speed and equally important. The combination of solid-state

devices with internal redundancy and error checking makes machines capable

not only of carrying out many billions of elementary operations in a reason-
ably small fraction of a human lifetime but, even more remarkably, of carrying

them out with reasonably high probability of no machine error. (There remains

ample opportunity for human error in programming, but producing correct pro-

grams for carrying out algorithms that are well understood is not much more
difficult than producing detailed and rigorous proofs of theorems that are well
understood.)

Computers have also influenced the subject by creating practical applications
of number theory and algebra in areas such as cryptography, data compression,
and error-correcting codes, leading to increased interest in efficient computa-

tion. The development of computer systems such as Reduce, Macsyma, Maple,
Mathematica, Axiom,... has also added impetus to the search for efficient al-
gorithms in algebra and arithmetic, including some (for example, calculation of
polynomial gcd's) that are highly relevant to algebraic number theory.

Of course, number-theoretic computation has a long history, and investiga-
tion of the efficiency of algorithms long antedates computers. Consider the

Euclidean algorithm, which in various forms is an essential component of any
computer algebra system. In Book 7 of Euclid's Elements it serves merely for
proving that any two integers have a greatest common divisor, and its usefulness

in calculation is not mentioned.  Formal analysis of its properties as an algo-
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rithm, however, dates back more than a century and a half to Binet's proof [Bil]
in 1841 that the number of division steps needed to calculate the gcd of two
integers is less than 10/3 of the number of decimal digits in the smaller integer,
when division with a least absolute remainder is used. A few years later, at the

session of the Académie des Sciences on 28 October 1844, Lamé presented a
note [L] in which (apparently unaware of Binet's work) he gave a similar result

for division with a least positive remainder, with 5 in place of 10/3; at the

November 4 session a week later, Binet presented a note [Bi2] mentioning his

own previous work and giving a different derivation of Lamé's lemma on the
rate of growth of the Fibonacci numbers.

These results of Binet and Lamé may be the first explicit demonstrations that

a particular algorithm can be executed in polynomial time. An algorithm is said
to be polynomial-time if the computation time it requires on a given input is

bounded by a polynomial function of the size of the input, measured by, for

example, the number of binary or decimal digits for integers or the degree plus
the number of digits in all the coefficients in the case of polynomials. Lamé cites

unnamed "traités d'Arithmétique" as satisfied with asserting that the number of
steps in the Euclidean algorithm is bounded by half the smaller argument, which
of course is exponential in the size of the input (and, as he points out, not even
true for very small arguments).

The search for more efficient methods has led to discoveries that, while they
would probably not have been found without the computational motivation,

are interesting and sometimes elegant as mathematics in their own right. To
illustrate this, we shall outline the development of methods for factoring poly-
nomials over the rationals, something one obviously needs even to begin com-

puting with algebraic numbers, since the most basic construction of an algebraic

number field is as the ring of polynomials modulo an irreducible polynomial.
(Advances in primality testing and factoring large integers involving sophisti-
cated application of algebraic number theory have been even more striking, but
that story is both harder to treat briefly and more widely known. The book
under review has good accounts of both subjects.)

We focus here on how various ideas were brought together to attain the theo-
retical goal of a polynomial-time algorithm, without attempting to discuss ques-
tions of practical efficiency. For a thorough discussion of the latter, see Chapter

3 of the book under review, where it is noted that for problems within the range

of practical computation today, the known polynomial-time algorithm appears
to be less efficient in practice than other less elaborate methods.

We write f{x) - x" + an^\x"~l + • •• + a0 for the polynomial to be fac-
tored, assuming, to simplify the exposition, that it has integer coefficients and
is monic (has leading coefficient 1) and we consider only monic factors. The
whole endeavor depends fundamentally on Gauss's lemma, which implies that

if / is monic in Z[x], then any monic factor of it in Q[x] is actually in

Z[x]. The finite nature of the factorization problem follows almost imme-
diately. First, one obtains a bound on the coefficients of a possible factor,

say, g(x) - xk + bk_iXk~l + ■ ■ ■ + b0 ■ For a crude estimate, note that the

roots of g are roots of /; so if M is any bound on the roots of /, such

as 1 + \a„-i\ H-1- |oo|, then \b¡\ < (k)Mk-'.  (Better bounds are available.

See [M] for an elementary proof of the less obvious inequalities \b¡\ < (*)||/||,

where ||/||2 = 1 + |a„_i |2 -\-h \a0\2 .) The problem then reduces to testing the
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finite number of g with coefficients within these bounds as possible factors of
f, but even for quite small n the number of possibilities is too large for this
to be a practical method of actually finding factors.

Nonetheless, we can use the complex roots to factor polynomials of moderate

degree quite efficiently. There are good algorithms, for example [JT], for finding

accurate approximations to the complex roots (and hence the irreducible real

factors) of polynomials. Each subset of these approximate real factors can be

checked to see if its product approximates some g in Z[x] to within compu-

tational error; and if it does, then the exact computation can be done to check
whether g is a factor. Subsets of factors can often be rejected because the sum

of the roots is not close enough to an integer; then the other coefficients in the

product need not be computed, so the amount of computation per subset is

usually small. Even so, the number of irreducible factors of / over R is at

least fl/2 and the number of subsets grows exponentially with the degree of /,

and this is not a polynomial-time algorithm.
Alternatively, one can restrict possible factors of / by modular arguments.

Kronecker's method uses the simple observation that if f(x) = g(x)h(x) in

Z[x], then g{m) divides f(m) for any integer m, so the values of g(m) are

restricted to a finite set. Since a polynomial of degree k is determined by its

value at k + 1 points, this leaves only a finite number of possible factors to
check. Except for factors of very low degree, however, the large number of

possibilities again makes the method impractical for actually finding them.
Working modulo primes and prime powers is much more effective. We de-

scribe later how to factor / modulo a prime p . We may assume that / has
a nonzero discriminant, since otherwise a nontrivial common factor of / and

its derivative can be found and removed. Then if p does not divide the dis-

criminant, / is the product of distinct irreducible factors mod p . As Zassen-

haus showed [ZI, Z2], these can be efficiently refined to yield a factorization
mod pk , which can be viewed as an approximation to the factorization of /

into irreducibles in Qp[x], where Qp is the p-adic completion of Q. Under

our simplifying assumption that / is monic and in Z[x], these factors will be

monic with coefficients in the p-adic integers Zp . If the approximation is good
enough (i.e., if k is sufficiently large), we can proceed exactly as we did above

with the factorization of / in R[x], checking products of subsets of the ap-
proximate p-adic factors to see whether they are close (i.e., congruent mod pk)

to polynomials in Z[x] with coefficients small enough for them to be possible

factors of /. The advantage of using Qp instead of R is that the number

of factors of / over Qp is typically of the order of log n, so for "most" /

the number of subsets of factors is polynomial in n and the algorithm requires

only polynomial time on the average. (Collins has given a precise formulation
and proof of this statement in [C].) This does not apply in all cases, however,

because there are / with many irreducible factors over Qp for every p . For

a simple family of examples, take / to have roots equal to the 2k quantities

obtained by taking all possible choices of signs in ±s/q~î ± • • • ± y/q¿ where the

q¡ are distinct primes of the form Am + 1. Then / is irreducible over Q, but

all its roots lie in Qp( vT?) if p is one of the q¡ and in the unramified quadratic
extension of Qp otherwise; so it has no irreducible factor of degree higher than
2 over any Qp .
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A polynomial-time algorithm was eventually obtained as a result of progress

on a seemingly unrelated question. A classical problem in the geometry of num-
bers, going back to Minkowski, is to find nonzero vectors of minimal length in

the lattice of integral linear combinations of a given basis in R" . The problem

is difficult, and there is reason to believe that it has no polynomial-time solution.

In [LLL] A. K. Lenstra, H. W. Lenstra, and L. Lovász exhibited a polynomial-

time algorithm, now universally known as the LLL algorithm, for finding short
vectors in such a lattice. (The vectors it finds are guaranteed only to be shorter

than 2"/2 times the length of a minimal vector but are usually much shorter

in practice.) They then derived from it a polynomial-time algorithm for poly-
nomial factorization, as follows. Let g be a fixed irreducible factor of / in
Zp[x]. If / factors in Z[x], then one of its proper factors must be congruent

mod pk to a multiple of g for any k . For a fixed k, the polynomials in Z[x]

congruent to such multiples form a lattice in the «-dimensional real vector space

R[x]/f(x) ; it is shown in [LLL] that for suitably large k, the LLL algorithm
will either find a polynomial in this lattice that has a nontrivial common factor

with / or prove f irreducible. It is shown that when everything is taken into

account, including the size required for pk and the cost of doing arithmetic on

multiple precision integers of the size that may occur during the computation,
the time required is 0(nn + «9(log ||/||)3), where ||/|| is defined as above.

Now we come to the problem of finding the factors of / mod p efficiently.

All the known algorithms for doing so seek polynomials g such that gcd(/, g)
is a nontrivial factor of /. Only the remainder of g mod / is relevant, so

we work in the algebra Ap(f) defined as Fp[x]/f(x), where Fp is the p-

element field. Note that the cost of arithmetic operations in Fp is polynomial
in log/?, and of operations on polynomials of degree n , including operations

in Ap(f) and calculation of gcd's by the Euclidean algorithm, is polynomial
in n and log/?. Relatively small primes suffice for the application to factoring

polynomials over the rationals; but for other problems such as factoring ideals
in rings of algebraic integers, large primes need to be considered too, so we take
the size of p into account.

If / is the product of distinct irreducible factors hi,..., h^, then the map

p taking g in Ap(f) to p{g) = (p\{g),..., pk{g)), where pt{g) is the re-
mainder of g mod hi, is an isomorphism from Ap(f) to the direct sum of the

fields Ap(h¡). Then gcd(g, /) is a nontrivial proper divisor of / if and only
if g is a proper zero-divisor in Ap{f), which happens if and only if some but

not all of the p¡(g) are 0. Berlekamp [Bel, Be2] showed how to exploit this

relation, even though we cannot compute p¡ without knowing h¡. Each Ap{hî)

contains a unique copy of Fp , consisting of the roots in Ap(h¡) of xp -x, from

which we see that the g in Ap{f) such that gp - g = 0 form a subalgebra B
isomorphic to the direct sum of k copies of Fp . Taking the pth power is a

linear operation in characteristic p, and computing its matrix with respect to
the basis 1, x, ... , x"~l for Ap(f) over Fp amounts to computing xkp in

Ap(f) for k = 1, 2,...,«- 1. Even for large p , this is polynomial in n and

log/? because for any associative multiplication, wth powers can be computed

in O(logw) multiplications, by using successive squaring to compute y¡ = x2'

for i = 1, 2, ... , [log2 m] and multiplying together the y¡ corresponding to the
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nonzero bits in the binary expansion of m . Then it is a matter of linear algebra

to find a basis for B in Ap(f). Its dimension is k, the number of factors. If
k = 1, B contains only the constant polynomials and f is irreducible.

Otherwise, for any nonconstant g in B the p¡(g) are not all the same, so

g - pi(g) is a proper zero-divisor in Ap(f) and gcd(/, g - Pi(g)) is a proper

nontrivial factor of /", for any /. Of course, we do not know the p¡(g), but
because g is in B, we know they are all in Fp. If p is very small, we can

simply test gcd(/, g — s) for s = 0, I, ... until a factor is found. Otherwise

it is a matter of linear algebra to compute the minimal polynomial (p satisfied

by g as an element of Ap(f) ; q> is a product of linear factors over Fp , and

its roots are the distinct values among the p¡(g).

The general factorization problem is thus reduced to the special case of fac-
toring a product of linear factors. Every element of Fp is a root of xp - x,

which is equal to (x-a)p-(x-a) = (x-a)((x-a)^-1»/2+l)((x-a)(p-''/2-l)

for any a in Fp . (We are assuming p > 2.) Unless all or none of the fac-

tors of <p divide ((x - a)^-1)/2 - 1), we get a nontrivial factor of <p from

gcd{q>, ((jc - a)^-1)/2 - 1)). Using the algorithm mentioned above for com-
puting powers, calculating such a gcd takes time polynomial in log/? and the

degree of q>. If a is picked at random, the chance of breaking (p into two

factors is roughly 1/2 if k = 2 and larger if k > 2; and it is not hard to

show that the expected number of a's needed for a complete factorization
is O(logp), so in a probabilistic sense we have a polynomial-time algorithm.
In practice it works well. The question of whether, for instance, simply taking

a = 0, 1, 2, ... until q> is factored always succeeds in 0(\ogp) steps is related

to the question of whether the least quadratic nonresidue mod p is O(logp)

and does not seem likely to be resolved soon. (Another approach to the general

factorization problem by Cantor and Zassenhaus [CZ] uses a variant of the idea
of this paragraph. For g chosen at random in Ap(f), gcd(/, g(i~^l2 - 1)

where q = pk often contains some but not all of the irreducible factors of /

that have degrees dividing k, and this leads to a method that also works well
in practice.)

The simplest way to give an idea of the scope of the book under review

is to list the main topics by chapter. Chapter 1 gives a concise treatment of
fundamental algorithms such as the powering method mentioned above and the
Euclidean algorithm and touches lightly on computation with large integers. The
second chapter deals with linear algebra over a field and over Z and includes

a thorough treatment of the LLL algorithm. Chapter 3 covers factorization of
polynomials over finite fields, over the rationals, and over algebraic number

fields. (Not much is said about polynomials in more than one variable, a topic
that belongs more to algebraic geometry than to algebraic number theory.)

The next three chapters deal with algebraic number theory. Chapter 4 covers

the basic questions of how to represent and compute with algebraic numbers,

modules, and ideals and introduces the problems of finding integral bases, ideal

factorizations, units, and class numbers. It also discusses the problem of deter-
mining whether one algebraic number field is isomorphic to another (or, more

generally, to a subfield of it) and presents an algorithm of the author and F. Diaz
y Diaz for finding "simple" polynomials defining a given number field which,

although it does not provide a canonical defining polynomial, does well enough
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to be very useful. Chapter 5, the longest in the book, is devoted to quadratic
fields and gives a complete picture of the extensive development that has led to
methods making the computation of class groups and fundamental units feasi-

ble for quadratic fields with discriminants of the order of magnitude of 1025 or

so. Chapter 6 gives state-of-the-art algorithms for finding integral bases, ideal
factorizations, class groups, and units in general algebraic number fields, as well

as for the determination of Galois groups for fields of degree up to seven.

The first six chapters constitute a thorough course in basic computational al-

gebraic number theory. The remainder of the book is more specialized. Chapter

7 presents relevant aspects of elliptic curves, with algorithms, including com-

putation of minimal models over Q by Tate's algorithm. Chapter 8 surveys

pre-1980 methods for primality testing and factoring integers, while Chapters
9 and 10 describe the more recent advances in primality testing and factoring,
respectively.

The tone of the book is refreshingly practical throughout, as might be ex-

pected from an author who is the leader of a group that has implemented
a powerful package of programs for algebraic number theory (the freely dis-

tributed pari/gp system; for a review see the AMS Notices for October 1991).

Algorithms are presented in the style of Knuth [K] as sequences of numbered

steps with operations described in mathematical terms but with assignments to
variables and the flow of control given in explicit detail. A mathematician can

read an algorithm, verify the correctness of the accompanying demonstration
that it computes what is claimed, and (with some minimal understanding of

what goes on in a computer) estimate its memory requirements and running
time. A programmer need only understand the computer representation of the

relevant data to be able to translate the algorithm into a programming language
and produce a working implementation.

The book is recommended to anyone who wants to know about the theory or

practice of computation in algebraic number theory, in general or for solving

particular problems. The chances are good of finding an algorithm that does the
job about as well as anyone currently knows how, along with a clear exposition

of the theory behind it. References and comments provide an annotated guide
to the literature for those who want further details.

The book is about as up-to-date as one can get, and the author has already
put together a supplement containing some additions and revisions along with

corrections for the very few misprints and minor errors that managed to es-
cape detection in the first printing. It is available by anonymous ftp from
megrez.ceremab.u-bordeaux.fr in the directory pub/cohenbook. (Your local

Internet expert can get it for you if you are not familiar with the process.)

By presenting so much material so clearly and in such an accessible style,
Professor Cohen has done a great service to both beginners and experts in the
field.
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Nonlinear potential theory of degenerate elliptic equations, by J. Heinonen,

T. Kilpeläinen, and O. Martio. Oxford University Press, London, 1993,
v+363 pp., $70.00. ISBN 0-19-853669-0

This is a remarkable book which covers a period of three decades starting with
Serrin's 1964 fundamental paper [29] on the Harnack inequality and Holder
continuity of solutions to quasilinear equations with nonquadratic growth in

the gradient. In that paper Serrin was able to extend the celebrated theorem of

De Giorgi-Nash-Moser to a general class of nonlinear second-order equations.

The prototype of such equations arises as the Euler equation of the energy
functional

(1) £>„(«; Q) = / \9¡u\pdx,        l</><oo.


