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This is a remarkable book which covers a period of three decades starting with
Serrin's 1964 fundamental paper [29] on the Harnack inequality and Holder
continuity of solutions to quasilinear equations with nonquadratic growth in

the gradient. In that paper Serrin was able to extend the celebrated theorem of

De Giorgi-Nash-Moser to a general class of nonlinear second-order equations.

The prototype of such equations arises as the Euler equation of the energy
functional

(1) Dp(u;Q)= í \9¡u\pdx,        l</><oo.
Jsi
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Critical points of this functional are (weak) solutions to the so-called p-
Laplacian

(2) Apu = d\v{\2Su\p-23u) = 0.

When p = 2, one recovers Laplace's equation Au = £"=11^ = 0. Solu-

tions of Au < 0 are called superharmonic functions. Classical potential theory

finds its roots in the physical interpretation of superharmonic functions as po-

tentials of compactly supported measures (mass or charge distributions). It has

evolved to its present monumental stature out of the pioneering investigations

of Laplace, Gauss, Poisson, Green, and Riemann. The development of modern

potential theory constitutes a tour de force in which ideas from analysis, ge-

ometry, topology, complex function theory, and probability have been brought

together. This effort is well witnessed in some of the classical sources on the
subject; see [31], [3], [1], [15], [10], [7], [13], [20], [9].

Nonlinear potential theory requires an even harder effort, as new ideas need

to be invented to supplement the lack of those available in the linear case.

Over the last thirty years the study of nonlinear partial differential equations

modelled on (2) has undergone a formidable development. Correspondingly, a

nonlinear potential theory has been created, and these two branches of analysis

have walked hand-in-hand and have offered inspiration to one another. The

book under review is an excellent witness of this development. Before we turn

to its discussion, however, we will attempt to give a simplified account of linear

potential theory. We hope, in this way, that the unfamiliar reader will be better

able to appreciate the subtleties involved in the nonlinear one.

Harmonic functions constitute one of the most beautiful chapters of classical

analysis. Given an open set Q c R" , a function u € C2(Q) is called harmonic

if Au — 0 in £2. Gauss's theorem states that if u is harmonic in £2, then

(3) u(x) = J—        uda = J—      udy
J    dBr(x) J    Br(x)

for every x e Q and r > 0 such that the closure of the ball Br(x) is con-

tained in Q. Hereafter, the notation jEfdp stands for p(E)~l JEfdß. Con-

versely, if u e C(fl) and (3) holds, then a classical theorem of Koebe states that

u e C°°(Q) and Au - 0 in Q. The mean value formula (3) is the cornerstone
of classical potential theory. Immediate consequences of it are the strong max-

imum principle for harmonic functions, Harnack's inequality and convergence

theorem, and Liouville theorems, just to name a few. One can also use (3) to

prove in an elementary fashion an important regularity result due to Cacciop-

poli [5], Cimmino [6], and Weyl [32], namely, that distributional solutions of
Au = 0 in Q are in fact C°° and solve Au = 0 in the classical sense.

Superharmonic functions are characterized by the property that

(4) J—        udo<u(x)
J   dBr(x)

for every x e Q and r > 0 such that Br(x) c Q. Furthermore, any u e

C(Q) which satisfies (4) verifies the strong minimum principle. One of the
central results in potential theory is Perron's generalized solution to the Dirichlet
problem [26]:

Aw = 0 in £2,        u\m=f.



320 BOOK REVIEWS

In Perron's method, one must allow for a more general notion of super-

harmonic function. The following definition was introduced by F. Riesz in

his seminal paper [28]. Given an open set £2 c R", a function u : £2 —►

(-00, oo] is called superharmonic if: (i) u is lower semicontinuous (l.s.c.)

in £2; (ii) u ^ oo in any open connected component of £2; (iii) u satis-

fies (4). Subharmonic functions are defined as the negative of superharmonic

ones. It is a classical result that a function u is subharmonic in £2 if and

only if « € L¡oc(£l) and Au > 0 in the sense of distributions. Perron's

method can be described as follows. Given a bounded open set £2 c R", let
/ : 9 £2 —► R be bounded.   Define the upper class %f and the lower class

Sff relative to / as t¿f — \ u superharmonic in £2| liman u > f >, Sff =

< u subharmonic in £2| limao. u < f >. Perron's upper and lower solutions are

respectively given by

Hf = inf u,        H_f = sup u.
«ea> J     ua^f

It is_an astonishing fact, and this is the central result in Perron's construction,

that Hf and Hf are harmonic in £2. A function / is called résolutive if

Hf = H_f. When this is the case, the harmonic function Hf = Hf = Hf is
the generalized Perron solution to the Dirichlet problem. Perron's ideas were

elaborated by Wiener [33], [34], [35], and perfected by Brelot [2], [4]. For this
reason, the function Hf is nowadays called the Perron-Wiener-Brelot (PWB)

solution to the Dirichlet problem. Wiener proved that every / e C(d£2) is

résolutive. This result and the maximum principle allows one to conclude that,

for any fixed x e £2, /1-> Hf(x) defines a positive, continuous linear functional

on C(d£2). By the Riesz's representation theorem there exists a unique positive
Borel measure dcox on ô£2 such that

Hf(x) = f
Ja

f(Q)dcox(Q).
an

The measure dcox is called the harmonic measure relative to £2 evaluated

at x. Clearly, dcox{d£i) = 1 for every x e il. Furthermore, Harnack's

inequality implies that doy and da? are mutually absolutely continuous for

every x, y e £1. Later on, Brelot was able to show that / is résolutive if and

only if / G L'(9£2; dcox) for any x € £2, where dcox denotes the harmonic

measure evaluated at x.

It had been known that the PWB solution to the Dirichlet problem for con-
tinuous data in general does not need to be continuous up to the boundary.

A simple example was provided by Zaremba in 1911. Soon after, in 1912,

Lebesgue constructed a more discouraging one; see [15]. However, Poincaré

and Zaremba had proved that for a domain satisfying the outer cone condi-

tion, the Dirichlet problem is solvable in the classical sense. In his celebrated

1924 paper [34], Wiener succeeded in giving a geometric characterization of the
so-called regular boundary points. A point xo e d£2 is called regular for the

Dirichlet problem if lim Hf{x) - /(xn) í°r every / e C(<9£2). Wiener proved
X—>Xq
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that JCo € 9 £2 is regular if and only if

cap((R" \ £2) n Br(x0) ; B2r(x0)) dr

(5) /Jo
= oo.

cap{Br(x0) ; B2r(x0))

For a given condenser (E ; £2), we have denoted by cap(E ; £2) the Newto-

nian capacity of the condenser. Roughly speaking, Wiener's criterion (5) says
that for a point Xq e 9 £2 to be regular, the complement of £2 must not be too

thin at xo.
In 1929 Kellogg published his treatise Foundations of potential theory [17].

This beautiful book, still much worth reading, marks the end of an epoch in

potential theory. At the time in which Kellogg wrote his book, new power-

ful functional analytic ideas (whose development had been made possible by

Lebesgue's integration theory) were entering the picture. In this connection,

the closely related notions of harmonic measure and capacity play an impor-

tant role. Let £2 c R" be an open set, and let E be a compact subset of £2.

Consider the class ^{E, £2) = {u e Q°(£2) \ u > 1 on E}. The variational
capacity of the condenser (E ; £2) is given by

(6) cap(£;£2)=     inf      ¡\3iu\2dx.

This notion is obviously related to the variational interpretation of harmonic

functions as free minimizers of the Dirichlet integral given by ( 1 ) when p = 2.

It can be recognized that the above definition is equivalent to the classical

Newtonian capacity defined via the fundamental solution of the Laplacian. In

standard modern language a harmonic function u in £2 is an element of the

Sobolev space //jj¿2(£2) such that

(7) ¡{2u,3¡(p)dx = 0
Ja

o

for every compactly supported tp e 7/1,2(ß).  Suppose that u G HX>2(Q) is
o

harmonic and that v e //1>2(£2) is such that u - v e Hl'2(£l) (so that in a
suitable weak sense v takes the value u on 9£2 ). Letting tp = u - v in (7),

one easily recognizes that

/ \&u\2dx< [ \3fv\2dx.
Ja Ja

We conclude that among all functions u G H1,2(£2) having the same "bound-

ary values" on d £2, harmonic functions are those which have the least energy

D(u ; £2). The variational approach has linked potential theory to the study of
second-order elliptic partial differential equations. One can, in fact, consider

instead of (7) the more general formulation

(8) /{A{x)2>u,2i(p) = 0,
Ja

where sí : £2 —» Mnxn(R) is a matrix-valued function with bounded measurable

entries, si is said to be uniformly elliptic if there exists A > 0 such that

A|f |2 < (J*(x)i, £}, for every ( e R" and a.e. x € R" . A function u e H^2(il)
is called a weak solution to the equation £?u = div(sí(x)¿&u) — 0 in £2 if (8)
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holds for every q> e Hl'2(£l). One of the culminating results of this century's

mathematics is the celebrated theorem of De Giorgi [8], Nash [25], Moser [24],
stating that weak solutions of S'u = 0 are locally Holder continuous (after
modification on a set of measure zero). Moser, in fact, also proved a Harnack

type inequality for nonnegative solutions to S'u — 0. This result opened the

way to the development of potential theory for linear equations with rough

coefficients. In this respect a fundamental theorem of Littman, Stampacchia,
and Weinberger [22] shows that a boundary point is regular for the Dirichlet

problem for the operator S? if and only if it is regular for A.

We have thus finally come to the subject of the book under review. In 1938

Sobolev [30] published his famous embedding theorem: H1 'P(R") --> L9(Rn),

where 1 < p < n and q > p is given by the equation 1 — 1 = 1. The energy

functional involved in Sobolev's theorem is that given by (1). As pointed out

above, the case p = 2 is deeply connected with classical potential theory, and
this has already been discussed.

Critical points of (1) are (weak) solutions to (2), thereby called p-harmonic
functions. The case p = n in (1), (2) has a special significance because of its

connection with the theory of quasiregular mappings. This link will be further

discussed below. From a physical standpoint equation (2), or rather its general-

izations, arises naturally, e.g., in the steady rectilinear motion of incompressible

non-Newtonian fluids or in phenomena of phase transition. A glimpse at (2)

immediately reveals two unfavorable features: (i) the operator is badly nonlin-

ear; (ii) ellipticity is lost at points where 3u = 0. The strong nonlinearity
makes it impossible to develop a potential theory along the lines of the classi-

cal one. /»-harmonic functions do not enjoy integral representation formulas

such as (3); there is no Green function, or Kelvin transform, or Poisson kernel.

/7-subharmonicity is not preserved by the classical mollification processes, as is
the case for subharmonic functions. This makes it impossible to regularize p-

subharmonic functions. In retrospect, this obstruction is also deeply connected

with (ii) above. The lack of ellipticity results in loss of regularity of /7-harmonic
functions. Through the fundamental work of several people, we know now that

the optimal regularity of solutions to (2) is C1,a. Here is an easy example.

The function u(x) - \x\p-1 satisfies the equation Apu - const; but u & C2,
when p > 2.

Nonlinear potential theory of degenerate elliptic equations, by J. Heinonen,

T. Kilpeläinen, and O. Martio, is an exceptionally well-thought-out, self-

contained monograph on the potential theory (in a broad sense) of the so-called
si -harmonic operator

(9) diYS/(x,&u) = 0.

Here, j/:R"xR"-»E" is a mapping which satisfies the following assump-
tions:

(i) x h-> si (x, Ç) is measurable for every £ £ R" , and ¡t, \-* si (x, Ç) is
continuous for a.e. x e R" .

(ii) There exist 1 < p < oo and positive numbers a, ß such that

(si(x,£),£)> aco{xmp ,        \si{x, i)| < jMoOlil'-1

for every £ e R" and a.e. x e R" .
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(iii) (sf(x ,^)-s/(x, &), íi-Í2) > 0, whenever ¿. , & e R" , and ft ^ 6 •
(iv) j/(jc,A^)=A|/1|í'-2^(x,^) for all AeR, A#0.
The function co in (ii) is assumed to be a /»-admissible weight. This means

that co is a nonnegative measurable function on R" such that the measure

dp. = codx satisfies on every ball B cR" :

(I) the doubling condition p(2B) < C¡p(B) ;
(II) a Sobolev type embedding theorem

( L \u\kpdp\kP < Cn diamßi L \2Su\p dpY ,

whenever u € C¿(B), for some k > 1 ;

(III) a Poincaré type inequality

/ \u-uB\pdp < CIU{diamB)p í \2¡u\p dp,
Jb Jb

whenever u E C1(B), with Ub = -I— udp;
J   B

(IV) a natural nondegeneracy condition which says that if «, 6 C°°(£2),

/ \Ui\pdp —y 0, and   / \3tu¡ - v\pdp —» 0 as i: —> oo, then v = 0 a.e. in £2.
Ja Ja
The model equation for (9) is the perturbed p-Laplacian diw{o){x)\S!u\p~23¡u).

In this case, si(x, 3¡u) — tu{x)\2u\p~22¡u, and one can take a = ß — 1 in

(ii) above. When co = 1, one recovers the /»-Laplacian introduced in (2).

One of the main motivations for presenting matters in such generality comes

from the theory of quasiregular mappings. It is not easy to explain this point

without going into a deep investigation of the subject, but let us say a few words.

Suppose that £2, £2' are open sets in C and that / : £2 —> £2' is holomorphic.

Then u o f : £2 —► R is harmonic, whenever u : £2' —► R is. Conversely, if

the pullback of every harmonic function in £2' is harmonic in £2, then / is

either holomorphic or antiholomorphic. Quasiregular mappings in R" are the

multidimensional analogue of holomorphic functions. A continuous mapping

/ : £2 -► R" is called quasiregular if / e [H^n(Q.)]" and there exists K > 1
such that for a.e. x e £2

\f'(x)\"<KJf(x).

Here, f'(x) denotes the formal differential of / at x, whereas Jf{x) is
the determinant of the Jacobian of / at x. An important aspect of the theory

is that the above-mentioned "pullback principle" has its counterpart for such
mappings if one replaces harmonic functions with si -harmonic ones; i.e., so-

lutions of equation (9). For instance, it is an easy calculation to show that the

function y/{x) = log|x| is a solution to the equation (2) in R" \ {0} when

p = n. The following important result (see Theorem 14.19 in the book under
review) illustrates the present situation.

Theorem. Let fid" be open, / : £2 -> R" be a nonconstant K-quasiregular

mapping, and ¿el". Then the function u{x) = y/(f{x) - b) - log|/(x) - b\
is si -harmonic in the open set £2\/-1(/3), with an si{x, Ç) satisfying (i)-(iv)
above with co = 1, a = K~l, and ß = K.

This theorem has notable topological implications when coupled with non-

linear potential theoretic results involving capacity and Hausdorff dimension.
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One of them is that nonconstant quasiregular mappings are discrete and open.

We cite the authors: "Potential theoretic methods are of great importance
in the study of quasiregular mappings, even more so than in classical complex

function theory where other means are often available." The book by Heinonen,

Kilpeläinen, and Martio represents veritable witness of the above statement.

In sixteen chapters the reader is taken from the basic properties of Sobolev

functions and variational capacities to the latest developments in the theory

of quasiregular mappings, nonlinear potential theory, and the deeply intercon-

nected theory of quasilinear partial differential equations modelled on (2). Each

chapter ends with some interesting historical notes, in which references to the
most recent literature can also be found. The bibliography is exhaustive and

contains a wealth of material.
One of the many highlights of the book is the solution in Chapter 9 of

the Dirichlet problem for equation (9) by adapting the Perron-Wiener-Brelot
method discussed above. This adaptation is by no means straightforward and

requires a great deal of preparatory work and new ideas. Just to give a flavor

of the difficulties involved, we mention that ¿/-superharmonic functions are

introduced and studied in Chapter 7. Following a standard approach in poten-

tial theory, part (iii) in the above-recalled Riesz's definition is replaced with the
assumption:

(iii)' For each open D <g £2 and each h 6 C(D) which solves the si-

harmonic equation (9) in D, the inequality u > h on dD implies u > h in
D.

In order to carry Perron's method, one now needs to know that for a suf-

ficiently large class of open sets one can actually solve the Dirichlet problem.

For Laplace's equation the Poisson kernel provides an explicit solution for a

ball, and balls constitute a basis for the topology of R" . This poses the prob-

lem of finding sufficient conditions for regularity of boundary points for the
si -harmonic equation (9). This program is carried in Chapter 6, where, among
other important results, it is shown that the Wiener type condition (see (5)
above)

(10)
i:\

capp<fi((Rn\n)nBr(x0);B2r(x0))

capi,>//(5r(xo);52r(x0))

p-i dr

is sufficient for the continuity up to the boundary of the variational solution
to the Dirichlet problem. In (10) capp ß denotes the variational /»-capacity

defined analogously to (6) but with respect to the measure dp = codx. In

particular, (10) shows that balls and polyhedra are regular for the Dirichlet
problem (in fact, it shows that any domain £2 which in the language of [16]

has an exterior "corkscrew" at every x0 6 9£2 is regular). This result moti-
vates the definition of Poisson modification of an ¿/-superharmonic function

in Chapter 7. In Chapter 9 this tool is used in connection with the Harnack

inequality established in Chapters 3 and 6 and a topological lemma of Cho-

quet to prove the analogue of Perron's result. Also, a generalization of a result

of Kellogg is given. The latter states that the set of irregular boundary points

of an open set has weighted /»-capacity zero. We also would like to mention

another important achievement in Chapter 7; namely, that ¿/-superharmonic
functions which are locally bounded are, in fact, weak supersolutions of equa-

tion (9).  This rather intriguing and nontrivial result says, in particular, that
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(locally bounded) j/-superharmonic functions belong to the weighted Sobolev

space H^p(Çl; p). This fact enables one to employ variational methods in
potential theoretic problems and vice-versa.

It should be remarked that only recently several important contributions have

been made to various basic questions regarding the Dirichlet problem. For in-
stance, the resolutivity of continuous functions (the analogue of Wiener's result

recalled above) in the nonlinear case was proved by Lindqvist and Martio [21 ] in

1985 for p = n and by Kilpeläinen [18] in 1989 for all p > 1 (see Theorem 9.25
in the book under review). It is a difficult open problem whether semicontinuous

functions are résolutive (personal communication by P. Lindqvist). A recent

fundamental contribution is the final settlement of Kilpeläinen and Maly [19]

of the necessity of Wiener's condition (10) in the range 1 < p < n - 1. In

the unweighted case the sufficiency of (10) was established by Maz'ya [23] in
1970. Ironically, but perhaps not surprisingly, what in the linear theory is the

easy part of Wiener's criterion, the necessity, has constituted in the nonlinear
setting a long-standing difficult open problem. In 1985 Lindqvist and Martio

solved the problem in the affirmative in the case p > n - 1, but their method

could not be extended to the case 1 </»<«- 1 .

The last part of the book (Chapters 13-15) links nonlinear potential theory

to the theory of quasiregular mappings. Chapter 14 is devoted to such mappings

and represents the only exception to the self-contained character of the book.

It could not have been otherwise, given the deep and technical nature of the

results involved. On the other hand, the exposition is masterfully organized,

and precise references are always provided. The important connection between

quasiregular mappings and the si -harmonic equation (9) is established in de-

tail (see Theorem 14.39). A fundamental question in the subject is whether

Picard-type results hold for entire quasiregular mappings. In 1967 Zorich [36]
conjectured that omission of two points is not possible. In a deep paper in

1985 Rickman [27] disproved this conjecture, showing that in R3 any number

of points can be omitted. In 1991 Eremenko and Lewis [11] found a remarkable

and insightful approach to Rickman's Picard theorem which combines nonlin-

ear potential theory with a priori estimates for solutions of (9). Their proof
is presented in detail in Section 14.58. Chapter 15 is devoted to showing the

admissibility of two important classes of weights: Muckenhoupt's ^-weights

and powers of the Jacobian of a quasiconformal mapping (this is a quasiregular

mapping which is also a homeomorphism). A celebrated theorem of Gehring

[14] states that if / : £2 —>■ £2' is quasiconformal, then its Jacobian Jf is an A^-
weight of Muckenhoupt. Thereby, there exists 1 < q < oo such that Jf e Aq .

In [12] it was shown that ^-weights are /»-admissible and that for every qua-

siconformal mapping / in R" , ./,_" is 2-admissible. Using Gehring's result,
l_£

in Theorem 15.33 it is proved that J,  " is /»-admissible for every 1 < p < n .

Two appendices, on existence of solutions to the si -harmonic equation (9)
and on the John-Nirenberg's theorem for doubling measures on R" , complete
the book.

Some final comments. The study of potential theory requires a certain

amount of effort. The book by Heinonen, Kilpeläinen, and Martio is no ex-

ception in this respect. If, however, one is willing to learn the subject and, at
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the same time, become deeply acquainted with its latest and exciting develop-

ments, then this is the place to start. We would like to add that the self-contained
character of this book and the excellent organization of the material make it a

perfect source for a graduate course. We are grateful to the authors for having

undertaken the writing of this book.
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Nearrings—genèses and applications, by James R. Clay.   Oxford University
Press, London, 1992, x+469 pp., $95.00. ISBN 0-19-853398-5

A nearring (or near-ring) satisfies all axioms of an associative ring, except
commutativity of addition and one of the two distributive laws. If the nearring
N satisfies the left distributive law a(b + c) = ab + ac, then N is called
a left nearring. A right nearring is, of course, a nearring satisfying the right
distributive law. If the (left or right) nearring N satisfies the condition On —
nO — O for all n e N, where O denotes the neutral element of the group

(N, +), then N is called O-symmetric. A nearring N with the property that

(N\{0}, •) is a group is called a nearfield. The additive group of a nearfield

is always abelian. In this review, all nearrings under consideration will be left
nearrings.

The first and fairly comprehensive treatise on nearrings by G. Pilz [P] ap-

peared in 1977 and in revised form in 1983. The monograph by J. D. P.
Meldrum, Near-rings and their links with groups [M], published in 1985, was

intended as an introduction to the subject but also contains some deeper ma-
terial on the group-theoretic aspect. The highly developed theory of nearfields

is covered by Heinz Wähling's treatise Theorie der Fastkörper [W], which was


