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volume makes a nice companion work to his excellent 13 Lectures on Fermafs

Last Theorem (Springer, New York, 1979).
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Let XA denote a point in a body, and suppose the body deforms and the

point moves to x¡. The deformation gradient F¡A is defined by

ít        dx'
fiA — -K-Ç- — *i,A ■

dXA

A classical elastic solid is one for which the stress tensor ars and the internal

energy U depend on xi¡A and possibly XA,  i.e.,

Grs = &rs{Xi,A > XA),

U=U(xi>A,XA).

In the linear approximation this gives ars as a linear function of strain x¡yA,

which is Hooke's law.

Over the past 30 years or so there has been significant interest in elastic-

like materials which cannot be adequately described by the classical theory of

elasticity. The present book is concerned with mathematical aspects of three

theories which depart from classical elasticity theory.

A beautiful exposition of two of the nonclassical elastic solid theories may be

found in Truesdell and Noll [6, p. 389]. They point out that Cauchy's second

law in Continuum Mechanics is a constitutive assumption which says there

are neither body couples nor couple stresses. A class of nonclassical materials

are those for which there may be couple stresses or body couples present, and

these are called polar materials; this theory was first developed by E. and F.

Cosserat in 1907. In fact, it was Duhem who suggested including effects of

direction via sets of points with vectors attached to them, thus giving rise to the

theory of oriented media. This theory was developed by the Cosserats. Another
generalization of classical elasticity is to elastic materials of grade 2 or higher,

and this is also lucidly explained by Truesdell and Noll [6].

The theory of oriented media leads naturally to a theory of elastic rods
(Antman [1]), or to elastic shell theory (Naghdi [3]). Also, it offers a very

successful way to describe liquid crystals, a class of materials surely known to

almost everyone in the developed world. Inclusion of body couples arises natu-

rally in the industrially important field of ferrohydrodynamics (Rosensweig [5]).

Here, the ferrofluid is a suspension of magnetic particles in a carrier liquid and
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the resulting fluid possesses giant magnetic response. Since the magnetic parti-

cles can spin on their own, the idea of a body couples fits naturally. Another

success of oriented media is to the description of turbulence; the papers of

Marshall and Naghdi [2] illustrate this beautifully.
The book by Ciarletta and Iesan concentrates on three generalizations of the

classical theory of elasticity, namely, that of nonsimple elastic bodies (Chapters

1-3), elastic solids with microstructure (Chapters 4-6), and elastic materials

which contain voids (Chapters 7, 8).

In the class of nonsimple elastic bodies they restrict attention to elastic mate-

rials of grade 2 for which the stress and internal energy contain also the deriva-

tive of the deformation tensor, i.e.,

Grs — Grs{Xi,A > Xi,AB , XA) ,

U = U(XitA > *i,AB , XA).

By elastic solids with microstructure they study bodies where the stress and

internal energy depend also on a variable x,A called a microscopic deformation,

or sometimes a dipolar displacement, and the derivative of xiA. Thus, for this

class of materials
Grs — &rs{Xi,A , *iB , X¡B,K > Xm) ,

U = U(XitA , XiB , x¡B,K , Xm).

In particular the above class may be seen to contain Cosserat materials as a

special case by taking x(J = e ,•_,•£<£* > where <f>k is a microrotation field. The

theory of elastic materials with voids was developed by Nunziato and Cowin [4]

and is physically important as many rubber-like materials do contain air-filled

pores. For this theory there is the usual deformation

x¡ = Xi(XA , t),

but there is also a volume fraction field

v = v(XA,t),        Q<v<\,

such that the mass density satisfies

p = vy,

where y is the density of the elastic matrix material. The internal energy for

such a material has constitutive relation

U = U{xi<A, v,v,b,v,T, XM),

where v = dv/dt and T is the temperature.

The mathematical content of the book is to review several types of variational

theorems, reciprocal theorems, existence theorems, continuous dependence re-
sults, uniqueness results, results of St. Venant type concerning the rate of decay

of displacement in a cylinder, and analysis of plane waves and shock waves. In

the treatment of elastic bodies with voids in addition to results of the above

type the writers treat the important topic of acceleration waves. An accelera-

tion wave is a propagating singular surface across which the acceleration may

suffer a finite jump discontinuity. The evolutionary behaviour of such a wave

is resolved. If the wave amplitude becomes infinite, this can lead to shock wave
formation.
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Overall the book is clearly written and will certainly be a useful reference

to anyone working in the field. There are many references, and some of those

are in Eastern bloc journals which may not be so familiar in the West. The

book is not produced in TgX but is nevertheless produced by a pleasant-to-read
word-processing system.
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It was the reading of a translation of Diophantus's books on arithmetic that

led Pierre de Fermât to found modern number theory and the study of what are

now called Diophantine equations. Diophantine equations are nothing more

than equations between polynomials in several variables, their Diophantineness

lying not in the nature of the equations but in that of the solutions being sought.

Diophantus and algebraic geometers like rational solutions, while Fermât and

his successors prefer integral solutions. Fermât himself is associated with two

important Diophantine equations, namely: the Fermât equation,

x"+y" = zn,

for which he claimed to have only the obvious solutions for n > 2 ; and the
so-called Pell equation,

x2 - Dy2 = 1,        D not a perfect square,

the name of which originates in an error of attribution on Leonhard Euler's
part.


