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CHAOS IN THE LORENZ EQUATIONS:
A COMPUTER-ASSISTED PROOF

KONSTANTIN MISCHAIKOW AND MARIAN MROZEK

ABSTRACT. A new technique for obtaining rigorous results concerning the global
dynamics of nonlinear systems is described. The technique combines abstract
existence results based on the Conley index theory with computer-assisted com-
putations. As an application of these methods it is proven that for an explicit
parameter value the Lorenz equations exhibit chaotic dynamics.

INTRODUCTION

The purpose of this note is to briefly describe a new technique for obtaining
rigorous results concerning the global dynamics of nonlinear systems. The tech-
nique combines abstract existence results based on topological invariants (the
Conley index) with finite, computer-assisted computations necessary to verify
the assumptions of the theorems in a concrete example. There are at least three
new aspects of this technique. It applies to concrete differential equations; it can
provide a relatively strong description of global dynamics (in terms of semicon-
jugacies); and the necessary computer-assisted computations are small enough
to be performed on currently available computers.

To focus the presentation of the ideas, an outline of a proof that the Lorenz
equations,

X =s(y—-x),
(1) y=Rx-y-xz,
z=xy—-qz,

contain chaotic dynamics for a prescribed open set of parameter values will be
presented.

Let f:R” — R” be a homeomorphism. For N C R", the maximal invariant
set of N is defined by Inv(N, f)={xe N| f"(x)e NVneZ}.

Theorem 1. Let
P:={(x,y,z)|z=53}

For all parameter values in a sufficiently small neighborhood of (s, R, q) =
(45, 54, 10), there exists a Poincare section N C P such that the Poincare map
g induced by (1) is Lipschitz and well defined. Furthermore, there exists a
d € N and a continuous surjection p:Inv(N, g) — X, such that

pogi=agop
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where g : Xy — X, is the full shift dynamics on two symbols.

The choice of parameters in Theorem 1 was dictated mainly by an attempt to
minimize the necessary computations. Preliminary estimates show that analo-
gous computations for the classical choice of parameters (s, R, ¢q) = (10, 28,
8/3), though substantially more complex, are also in the range of currently
available computers (computations in progress, see [4]). However, it must be
emphasized that Theorem 1 shows only the existence of an unstable invariant
set which maps onto a horseshoe. Though the set may lie within a strange at-
tractor, we do not yet have sufficiently strong abstract results to prove that the
whole attractor is chaotic.

Let us mention some other attempts to reduce the question of chaos in the
Lorenz equations to a finite computation: an Q-explosion approach [7] and
a shooting method approach [1]. Contrary to the presented method, in both
cases the authors have not yet performed the actual computations.! Moreover,
as mentioned before, Theorem 1 provides a description of the dynamics in
a neighborhood of an explicitly presented parameter value, i.e. (s, R, g) =
(45, 54, 10). This should be contrasted with the other methods where the
conclusion is that explicit dynamics occur for some unknown parameter value
within a specified range (shooting method) or for a sequence of values tending
to a given parameter value (the Q-explosion method).

The proof of Theorem 1 has five distinct components:

1. algebraic invariants based on the Conley index theory which guarantee
the structure of the global dynamics, in this case the semi-conjugacy to
the full two shift;

an extension of these invariants to multivalued maps;

. atheory of finite representable multivalued maps which, when combined
with the above-mentioned algebraic invariants, serves to bridge the gap
between the continuous dynamics (in this case the Lorenz equations)
and the finite dynamics of the computer;

4. the numerical computations of the finite multivalued map of interest;
5. the combinatorial computations of the Conley index for the multivalued
map.
The rough idea of the general scheme of the proof is as follows. Choose
a potential isolating neighborhood N for the Poincare map g. Select a fi-
nite representable multivalued map £ (definitions follow) such that 2 is an
extension of g, ie. g(x) e Z(x) for all x € dom £(x). Perform a com-
puter calculation both to determine & and to check whether N is an isolating
neighborhood for & . Theorem 3 guarantees that whenever N is an isolating
neighborhood for # , it is also an isolating neighborhood for g and the Conley
indexes coincide. If N is an 1solatmg neighborhood, then the Conley index of

N under £ is computed (this is again a finite computation and can be done

by computer). This then determines the Conley index for the set N under the

original Poincare map g and allows one to verify the assumptions of Theorem

2, which yields Theorem 1.

If N is not an isolating neighborhood of 2, then one is free to choose a
new multivalued map which is a better approximation of g and to repeat the

w N

ISince completion of the original version of this paper, numerical calculations based on modi-
fications of the ideas of [1] have been completed [8].
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computations. Theorem 4 implies that if N is an isolating neighborhood for
g, then N is an isolating neighborhood for a sufficiently refined choice of 2.
In other words, if N is an isolating neighborhood under g, then given sufficient
computing power, this scheme will provide a proof of this fact and, in addition,
the values of the Conley index of N under g.

In the sections below each of the five components of the proof will be dis-
cussed. Most of the theoretical results hold true in greater generality; however,
for the sake of exposition the simplest setting has been chosen.

1. ISOLATING NEIGHBORHOODS AND CHAOS

Again, let f:R"” — R” be a homeomorphism. A compact set N is called an
isolating neighborhood if Inv(N, f) C int N. To determine the Conley index
of an isolated invariant set for a map, one begins with an index pair (N, L).
The details of the definitions which follow can be found in [5]. For the purposes
of this paper it is sufficient to know that N is an isolating neighborhood, L
is its exit set, and the map f induces a homomorphism called the index map
on the cohomology of the index pair, i.e. If : H*(N,L) — H*(N, L). The
cohomological Conley index of an isolating neighborhood under f is given by

Con®(Inv(N, /) = (CH*(Inv(N, ), x*(Inv(N , /))),

where CH*(Inv(N, f)) is the graded module obtained by quotienting
H*(N, L) by the generalized kernel of I and x*(Inv(N, f)) is the induced
graded module automorphism on CH*(Inv(N, f)).

Let N = Ny U N; be an isolating neighborhood under f where N and
N, are disjoint compact sets. For k,/ = 0,1, let N; = NN f(N)). Let
Sk :=Inv(Ny, f) and Sy := Inv(Ny U Ny U Ny, f). The following result is
a special case of [3, Theorem 2.3].

Theorem 2. Assume that
Q,id) ifn=1,
Con"(Sy) =
on’(Sk) { 0 otherwise
and that x*(Sy) is not conjugate to x*(Si) @ x*(S;). Then there exists d € N
and a continuous surjection p :Inv(N, f) — X, such that

pofi=aop
where o : Xy — X, is the full shift dynamics on two symbols.

2. INDEX THEORY FOR MULTIVALUED MAPS

Recall that a multivalued map from R”" to itself is a function &% : R* —
ZPR")\ {2} from R” to the power set of R”. A continuous function f :
R" — R” is a selector for # if f(x) € #(x) for all x € R*. In the other
direction, a multivalued function & is an extension of a continuous function
S:R*" > R" if f(x) e #(x) forall x € R". Let & be a multivalued func-
tion on R". For 4 C R" let F(4) := U, F (x) and define, recursively,
F"(A) = F(F"(A)). In this way F defines a multivalued discrete semi-
dynamical system on R”. A Conley index theory for such systems has been
developed in [2], and the basic ideas are as follows. Given B C R", its in-
verse image is ' (B) := {x € R" | #(x) C B} and its weak inverse image is
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F* Y (B):={x e R*"| #(x)NB # @}. Given N C R", the invariant set of N
is given by

Inv(N, %) :={x € N |3y, :Z — N such that y,(0) =0, and

x(n+1) e F(y(n)}.
The diameter of % over N is the number

diam y & = sup{llz —y| | z, y € F(x)}.
XEN

The diameter of & over its domain will also be called the size of #. N is
called an isolating neighborhood under & if

B(Inv(N, ), diamy &) C int (N).

In order to define the Conley index for & in N, some conditions (admissi-
bility) must be met (see [2]). For the sake of this paper it is enough to mention
that convex-valued maps with continuous selectors are admissible.

Theorem 3. Let & be an admissible multivalued map and f a selector of & .
If N is an isolating neighborhood for & , then it is an isolating neighborhood
for f. Furthermore,

Con* (Inv(N, f)) ~ Con* (Inv(N, &)).

The importance of this theorem is that it implies that if the Poincare map g
given by the Lorenz equations is replaced by an extension £ (i.e. a multivalued
map such that g(x) € £(x)) such that N is an isolating neighborhood for Z,
then any index information obtained for & is valid for g.

The next theorem is a typical convergence theorem and states that any index
information of g can be determined by a sufficiently small extension 2.

Theorem 4. Let N be an isolating neighborhood for f :R" — R", a Lipschitz
continuous function. Let {%,} be a family of extensions of f such that &, — f.
Then for n sufficiently large, N is an isolating neighborhood for & .

For the purposes of computation it is convenient to use the following special
form of an isolating neighborhood. N is an isolating block for & if

(2) B(#* Y (N)NNNnF(N), diamy &) C int (N).

Notice that contrary to the notion of an isolating neighborhood, it uses only a
finite number of iterates of % (one forward and one backward).

3. FINITE REPRESENTABLE MULTIVALUED MAPS

For the proof it is necessary to use a computer (which can manipulate only a
finite set of objects) to obtain cohomological information generated by the con-
tinuous map g. Since g is Lipschitz, the simplicial approximation theorem
guarantees that in principle this can be done but the computations must be per-
formed in such a way that they apply not only to the simplicial approximation
but also to all nearby maps, including the original map g. Hence it is more
natural and technically simpler to employ finite multivalued maps. The ideas
behind this solution will now be explained (see [6] for details).

On a computer one can work with infinite sets of mathematical objects (num-
bers, vectors, functions, relations, etc.) only by choosing a finite subset of ob-
jects and coding its elements with natural numbers. The elements of the selected
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finite subset of objects are referred to as representable objects (relative to the se-
lected coding). In the proof of Theorem 1 the set of representable real numbers
is given by the standard floating point representable coordinates. The repre-
sentable sets in R3 were chosen by selecting a compact set M C R? within
which the dynamics of interest occur, a set D of representable vectors, and a
representable number 7, in such a way that the set M is covered by the col-
lection of balls B(d, n), d € D. Since the particular metric chosen influences
only the efficiency of the algorithm, for the proof the sup norm was chosen.
Thus, the balls are in fact cubes. A representable set is any union of a subcol-
lection of these cubes. Let My C M . A representable multivalued map on M,
is a multivalued map & : My — (M) such that the set {F(x) | x € My} is
a finite collection of representable sets.

Representable multivalued maps allow for the passage from continuous dy-
namics of the Lorenz equations to the discrete dynamics of the computer. Fur-
thermore, they are more readily attainable than simplicial approximations, as
can be seen from the following description. Let f : My — M be a Lipschitz
continuous function with Lipschitz constant L. Assume that for every rep-
resentable vector d one can compute a representable vector fy(d) such that
lf(d) = fo(d)|| < &, where J is a given representable number. Defining & (x)
as the smallest convex representable set which contains B(fy(x), d + Ln), one
obtains a multivalued map % : My — M such that f(x) € #(d) for all
x € B(d, n). Then

FUx)= |J F@), and F'x):= [ F@)

lld=x]I<n ld=x]i<n

are easily seen to be finite, representable, and respectively upper and lower
semicontinuous extensions of f. Furthermore, &' is convex valued.
Letting 6 — O results in the following proposition.

Proposition 5. Let My C R" be a compact set, and let f : My — R" be a Lips-
chitz continuous function. Then there exists a sequence %, of finite representable
extensions of f such that F, — f as n — oo.

4. NUMERICAL COMPUTATIONS

Simple and standard numerical integration of the Lorenz equations at the
parameter values (45, 54, 10) leads to a return map which strongly suggests the
existence of horseshoe dynamics. In particular, one can find two rectangles Rg
and R, in the plane P which, under the numerical integration, appear to cross
themselves and each other transversally. Thus, one expects the existence of an
invariant set which is conjugate to the full shift dynamics on two symbols.

As was suggested in the introduction, the proof of the semi-conjugacy de-
scribed in Theorem 1 was obtained by computing a representable multivalued
admissible extension & of the Poincare map g such that N := Ny U N, is an
isolating neighborhood under % . The sets Ny and N; were taken to be care-
fully chosen rectangles within Ry and R; in order to minimize computation.
Ideally the multivalued extension £ would have been obtained by integrating
the Lorenz equations numerically from the center of each cube in the grid of
representable sets and incorporating all errors into the size of the assigned value.
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Unfortunately the growth of errors is exponential with time, which caused tech-
nical difficulties that needed to be overcome.
There are four sources of error:

(i) the approximate arithmetic of the machine;

(i1) the numerical procedure used to integrate the equations;

(111) extending the value from the center of a cube to the whole cube by
means of Lipschitz constant estimates, as was explained in the previous
section;

(iv) estimating the point of intersection of the trajectory with the cross-
section from two consecutive steps of the numerical method.

In every case rigorous error bounds can be obtained (see [4] for details). It
should be mentioned here that double precision arithmetic and the standard
fourth-order Runge-Kutta method with step size 100/2%° were used. The error
estimates for (iii) were based on the Gronwall inequality, the local Lipschitz
constants, and logarithmic norms. The second-order Taylor expansion of the
solution was used to estimate errors in (iv). This resulted in the growth factor
(ratio of the size of a value to the size of the grid) for equation (1) and in the
function & described above being approximately 10%. The number of initial
grid points needed to fulfill condition (2) by the associated multivalued map
is proportional to the square of the growth factor.

With the computing power available a significantly smaller growth factor was
needed. To achieve this, twenty-three intermediate cross-sections, labelled Z; ,
k=-1,...,22, were introduced, with the original Poincare section appearing
as P = Z_; = Ej. Using the technique described above, twenty-two finite
representable multivalued maps & : Z,_; — Z; were obtained. Observe that
each multivalued map is an extension of the flow defined map g; : E;_; —
E; determined by the Lorenz equations. % was taken to be the composition
£10500...05.

The calculation was performed beginning with approximately 700,000 cubes
covering N;. (It was not necessary to compute £ on N, because of the
symmetry present in the Lorenz equations.) The growth factor in this case was
approximately 30, which resulted in the diameter of £(q) being less than 0.044
for all ¢ € Q. Thus to determine whether N is an isolating block under 2,
one need only check that

B(g*"'(N)NNNng(N), 0.044) C int N.

This is indeed the case. Therefore N is an isolating neighborhood of 2, and
hence by Theorem 3 N is an isolating neighborhood of g.

5. THE CONLEY INDEX OF &

Recall that to compute the Conley index of an isolated invariant set for a
map, one first needs to find an index pair (N, L) and then to determine the
index map, i.e.

I :H*(N, L) — H*(N, L).

For this particular index pair these objects can be determined essentially by in-
spection, since the only cohomology group of interest is H'(N, L). However,
for more general problems it should be observed that D can be viewed as the
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set of vertices of a simplicial decomposition of P, and hence #Z is a multival-
ued simplicial map. Therefore, determining I¢ is in fact a finite computation
and hence in principle can be done by the computer. From I3 one computes
the Conley index Con*(Inv(N, £)) and hence by Theorem 3 the index of in-
terest Con*(Inv(N, g)). For this problem the index computations lead to the
algebraic hypotheses of Theorem 2, and hence Theorem 1 follows.
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