Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Necessity and chance: deterministic chaos in ecology and evolution
HTML articles powered by AMS MathViewer

by Robert M. May PDF
Bull. Amer. Math. Soc. 32 (1995), 291-308 Request permission

Abstract:

This is an outline of my Gibbs Lecture to the American Mathematical Society in January 1994; it is essentially a sign-posted guide to a stilldeveloping literature.
References
    R. M. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976), 459-467.
  • Colin W. Clark, Mathematical bioeconomics, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1990. The optimal management of renewable resources; With a contribution by Gordon Munro; A Wiley-Interscience Publication. MR 1044994
  • R. M. Anderson and R. M. May, Infectious diseases of humans: Dynamics and control, Oxford Univ. Press, Oxford, 1991. R. M. May and M. A. Nowak, Superinfection, metapopulation dynamics, and the evolution of diversity, J. Theoret. Biol. 170 (1994), 95-114. M. A. Nowak, R. M. May, and K. Sigmund, Immune responses against multiple epitopes, J. Theoret. Biol. (1995) (in preparation). D. Tilman, R. M. May, C. L. Lehman, and M. A. Nowak, Habitat destruction and the extinction debt, Nature 371 (1994), 65-66. P. A. B. Moran, Some remarks on animal population dynamics, Biometrics 6 (1950), 250-258. W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Canad. 11 (1954), 559-623.
  • O. M. Šarkovs′kiĭ, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. . 16 (1964), 61–71 (Russian, with English summary). MR 0159905
  • T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
  • R. M. May and G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Amer. Natur. 110 (1976), 573-599. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), 130-141. T. Mullin (ed.), The nature of chaos, Oxford Univ. Press, Oxford, 1993. L. A. Smith, Local optimal prediction: Exploiting strangeness and the variation of sensitivity to initial conditions, Philos. Trans. Roy. Soc. London Ser. A 348 (1994), 371-381.
  • Rodney C. L. Wolff, Local Lyapunov exponents: looking closely at chaos, J. Roy. Statist. Soc. Ser. B 54 (1992), no. 2, 353–371. MR 1160475, DOI 10.1111/j.2517-6161.1992.tb01886.x
  • I. Hanski, P. Turchin, E. Korpimäki, and H. Henttonen, Population oscillations of boreal rodents: Regulation by mustilid predators leads to chaos, Nature 364 (1993), 232-235. G. Sugihara, B. T. Grenfell, and R. M. May, Distinguishing error from chaos in ecological time series, Philos. Trans. Roy. Soc. London Ser. B 330 (1991), 235-251. L. F. Olsen and W. M. Scharfer, Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics, Science 249 (1990), 499-504. G. Sugihara, Nonlinear forecasting for the classification of natural time series, Philos. Trans. Roy. Soc. London Ser. A 348 (1994), 477-495.
  • Blake LeBaron, Chaos and nonlinear forecastability in economics and finance, Philos. Trans. Roy. Soc. London Ser. A 348 (1994), no. 1688, 397–404. MR 1300159, DOI 10.1098/rsta.1994.0099
  • D. Ruelle, The Claude Bernard Lecture, 1989. Deterministic chaos: the science and the fiction, Proc. Roy. Soc. London Ser. A 427 (1990), no. 1873, 241–248. MR 1039785
  • A. S. Weigend and N. A. Gershenfeld, Time series prediction: Forecasting the future and understanding the past, Addison-Wesley, Reading, MA, 1993.
  • Howell Tong, A personal overview of non-linear time series analysis from a chaos perspective, Scand. J. Statist. 22 (1995), no. 4, 399–445. With discussion and a reply by the author. MR 1363222
  • A. M. Hastings, C. L. Horn, S. Ellner, P. Turchin, and H. C. J. Godfray, Chaos in ecology: Is Mother Nature a strange attractor?, Ann. Rev. Ecol. Syst. 24 (1993), 1-33.
  • Martin Casdagli, Chaos and deterministic versus stochastic nonlinear modelling, J. Roy. Statist. Soc. Ser. B 54 (1992), no. 2, 303–328. MR 1160473, DOI 10.1111/j.2517-6161.1992.tb01884.x
  • G. Sugihara and R. M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature 344 (1990), 734-741.
  • J. Doyne Farmer and John J. Sidorowich, Exploiting chaos to predict the future and reduce noise, Evolution, learning and cognition, World Sci. Publ., Teaneck, NJ, 1988, pp. 277–330. MR 1036562
  • Floris Takens, Detecting strange attractors in turbulence, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 366–381. MR 654900
  • Peter Grassberger and Itamar Procaccia, Measuring the strangeness of strange attractors, Phys. D 9 (1983), no. 1-2, 189–208. MR 732572, DOI 10.1016/0167-2789(83)90298-1
  • B. T. Grenfell, A. Kleczkowski, S. P. Ellner, and B. M. Bolker, Measles as a case study in nonlinear forecasting and chaos, Philos. Trans. Roy. Soc. London Ser. A 348 (1994), 515-530.
  • J. D. Murray, Mathematical biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1989. MR 1007836, DOI 10.1007/978-3-662-08539-4
  • Michael P. Hassell, The dynamics of arthropod predator-prey systems, Monographs in Population Biology, vol. 13, Princeton University Press, Princeton, N.J., 1978. MR 508052
  • A. J. Nicholson and V. A. Bailey, The balance of animal populations. Part I, Proc. Zoolog. Soc. London 1 (1935), 551-598. M. P. Hassell and R. M. May, Stability in insect host-parasite models, J. Animal Ecol. 42 (1973), 693-726. S. W. Pacala, M. P. Hassell, and R. M. May, Host-parasitoid associations in patchy environments, Nature 344 (1990), 150-153. M. P. Hassell, R. M. May, S. W. Pacala, and P. L. Chesson, The persistence of host-parasitoid associations in patchy environments, Amer. Natur. 138 (1991), 568-583. M. P. Hassell, H. N. Comins, and R. M. May, Spatial structure and chaos in insect population dynamics, Nature 353 (1991), 255-258. H. N. Comins, M. P. Hassell, and R. M. May, The spatial dynamics of host-parasitoid systems, J. Animal Ecol. 61 (1992), 735-748. R. V. Solè and J. Valls, Spiral waves, chaos and multiple attractors in lattice models of interacting populations, Phys. Lett. A 166 (1992), 123-128. M. P. Hassell, H. N. Comins, and R. M. May, Species coexistence and self-organizing spatial dynamics, Nature 370 (1994), 290-292. D. A. Rand, Measuring and characterizing spatial patterns, dynamics and chaos in spatially extended dynamical systems and ecologies, Philos. Trans. Roy. Soc. London Ser. A 348 (1994), 497-514. R. Axelrod, The evolution of cooperation, Basic Books, New York, 1984.
  • Robert Axelrod and William D. Hamilton, The evolution of cooperation, Science 211 (1981), no. 4489, 1390–1396. MR 686747, DOI 10.1126/science.7466396
  • M. A. Nowak and K. Sigmund, Tit for tat in heterogeneous populations, Nature 355 (1992), 250-253. —, Chaos and the evolution of cooperation, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), 5091-5094. R. M. May, More evolution of cooperation, Nature 327 (1987), 15-17. M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359 (1992), 826-829.
  • Martin A. Nowak and Robert M. May, The spatial dilemmas of evolution, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3 (1993), no. 1, 35–78. MR 1218718, DOI 10.1142/S0218127493000040
  • Martin A. Nowak, Sebastian Bonhoeffer, and Robert M. May, More spatial games, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), no. 1, 33–56. MR 1276803, DOI 10.1142/S0218127494000046
  • —, Spatial games and the maintenance of cooperation, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), 4877-4881. A. V. M. Herz, Collective phenomena in spatially extended evolutionary games, J. Theoret. Biol. 169 (1994), 65-87. B. A. Huberman and N. S. Glance, Evolutionary games and computer simulations, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), 7712-7715. J. Maynard Smith, Evolution and the theory of games, Cambridge Univ. Press, Cambridge, 1982. T. Stoppard, Arcadia, Faber and Faber, London, 1993.
Similar Articles
  • Retrieve articles in Bulletin of the American Mathematical Society with MSC: 92D25, 92D15, 92D40
  • Retrieve articles in all journals with MSC: 92D25, 92D15, 92D40
Additional Information
  • © Copyright 1995 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 32 (1995), 291-308
  • MSC: Primary 92D25; Secondary 92D15, 92D40
  • DOI: https://doi.org/10.1090/S0273-0979-1995-00598-7
  • MathSciNet review: 1307905