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Much of mathematics is so technical that it is appreciated by only specialists
in that area. How do you convince someone, even another mathematician, that a
mathematical problem or result is interesting? Traditionally, one of the simplest
ways is to relate it to some aspect of geometry, number theory, or an application
to physics, engineering, or the social sciences. The recent solution of the Fermat
problem is an example where the use of formidable technical material has motivated
many to learn that material. As another example, the technical aspects of partial
differential equations are often appreciated because of the insight and tools they
have given both to applied problems and, more recently, to geometry.

Geometry plays a special role as one of the more immediately appreciable parts
of mathematics. It is a meeting ground for a diversity of techniques. In many ways
it is applied mathematics in the deepest sense, because in attacking a geometry
problem one frequently must invoke and apply techniques and intuition from all
branches of mathematics.

At the birth of the central innovation of Greek mathematics, geometry was a
principal protagonist. Descartes’s introduction of coordinates was the marriage,
sometimes resented by various purists, of algebra and geometry. Coordinates not
only paved the way for a systematic calculus, it also permitted the systematic study
of curves and surfaces — rather than the limited world of triangles, parallelograms,
and conic sections along with their three-dimensional analogs. To understand the
curvature at a point on a smooth plane curve, by a rigid motion we may assume
this point is at the origin and that the x−axis is the tangent line. Then the Taylor
expansion at the origin is

y = f(x) = 1
2cx

2 + · · · .

The constant c is the curvature of this curve (1
c is also the radius of curvature of

the osculating circle). Similarly, for a point on a smooth surface in R3, we may
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assume the point is at the origin and the xy plane is its tangent plane. Then the
Taylor expansion has the form

z = f(x, y) = 1
2 (ax2 + 2bxy + cy2) + · · · ,

where a = fxx(0, 0), etc. The eigenvalues of the second derivative quadratic form
ax2 + 2bxy + cy2 are the principal curvatures k1, k2. From these it is natural to
consider the invariants: trace H = k1 + k2 and determinant K = k1k2. These are
the mean and Gauss curvatures, respectively. One can also compute the element
of arc length

ds2 = E(x, y)dx2 + 2F (x, y)dx dy +G(x, y)dy2,

and use this to compute the element of area.
Geometric problems were among the earliest considered in the calculus of vari-

ations. Arc length was used to study paths of shortest length (geodesics) on a
surface, to study, among all surfaces with a given boundary, the surface having
least area (minimal surfaces), and to study, among all regions in the plane whose
boundary has a given length, the region with greatest area (isoperimetric prob-
lem). See Hildebrandt-Tromba [HT] for a beautiful non-technical introduction and
Osserman’s book [Os2] for a readable more detailed treatment.

The Euler characteristic of a surface as well as aspects of projective geometry
made it clear that there are some geometric properties that do not depend on the
metric properties of a surface. Gauss’s classical discovery — by a long explicit
computation — that the Gauss curvature K is determined by the element of arc
length alone and is independent of the way the surface lies in R3 was the start of
the study of intrinsic differential geometry. The Gauss-Bonnet Theorem was also
a significant generalization of the Euclidean result that the sum of the angles of a
triangle is always π, as well as relating, for compact surfaces, the curvature and
the Euler characteristic. It was one of the earliest global — rather than local —
theorems in differential geometry. See Osserman’s wonderful book [Os1] for a non-
technical introduction to the essential ideas in differential geometry, remarkably
without formulas.

The next major step in the study of intrinsic geometry was Riemann’s general-
ization of this to higher dimensions. He began with an element of arc length

ds2 =
n∑
1

gij(x)dxi dxj

and asked how much one can simplify this by making a change of coordinates xi =
ϕi(y1, . . . , yn). For instance, how could one recognize if, in some new coordinates
y = ϕ(x), this is just the Euclidean metric ds2 =

∑
(dyk)2? Riemann observed

that at one point — which may be assumed to be at the origin — one could always
pick coordinates so that gij(0) = δij and its first partial derivatives there are zero.
Thus, by a Taylor expansion

ds2 =
n∑

i,j=1

(
δij +

n∑
k,`=1

∂gij
∂xk∂x`

(0)xkx` + · · ·
)
dxi dxj .

The essential term is then ∂gij/∂x
k∂x`. After brilliant scrutiny to understand its

invariance properties, Riemann was led to introduce the curvature tensor Rijk` as
an appropriate combination of the second derivatives ∂gij/∂x

k∂x`. He showed, for
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instance, that one has the Euclidean metric if and only if Rijk` = 0. (See Spivak
[Sp, Vol. 2] for a lucid discussion.)

Christoffel observed that one should split Riemann’s computation of the curva-
ture tensor into two interesting steps: compute the “Christoffel symbols” Γkij that
involve only the first derivatives of the metric, and then compute the curvature ten-
sor by taking the first derivatives of the Christoffel symbols. Consequently, it was
natural to investigate curvature tensors that arose from any Christoffel symbols,
not just those one obtains from elements of arc length. As Levi-Civita observed,
these Christoffel symbols are then viewed as defining an affine connection, which
can be interpreted as describing how a tangent vector can be moved parallel to
itself; it does not require an element of arc length.

Einstein’s insight that his general theory of relativity should be written in the
language of Riemannian geometry gave an enormous impetus to the study of dif-
ferential geometry, since it showed that Riemann’s abstract generalization actually
arose in the “real” world. Here the arc length is not positive definite but is based
on the indefinite quadratic form (dx1)2 + (dx2)2 + (dx3)2 − dt2 of the light cone.
Of more recent significance (known by the late 1920’s) was the awareness that
Maxwell’s equations can be interpreted by viewing the electromagnetic potential
as defining an affine connection. Maxwell’s equations then express the electro-
magnetic field as the curvature of this connection. This was later generalized to
Yang-Mills fields and is related to the even more recent work by Sieberg-Witten.

In this century geometry has vigorously pursued many paths: algebraic and
differential topology, algebraic geometry, Riemannian geometry, the geometry de-
termined by an affine connection, the geometry of a complex manifold, and sym-
plectic geometry. The badge geometer is worn proudly by many, their work using
tools drawn from all of mathematics; indeed, part of the richness of contemporary
mathematics is the intertwining of mathematics (and physics) so, for instance, the
spectrum of the Laplacian, which was originally studied to understand the wave
equation, is now a significant ingredient in diverse situations including number
theory and the lengths of closed geodesics.

Chavel’s Riemannian geometry: A modern introduction is one of the few texts
that treat some developments that have occurred since 1960. The heart of this
book is in Chapters 3–7, whose main theme is comparison inequalities .

A typical comparison inequality is Bishop’s Inequality (Chapter 3): Let V (r) be
the volume of a ball of radius r in a complete n-dimensional Riemannian manifold
whose Ricci curvature is at least (n − 1)κ. Then V (r) ≥ Vκ(r), where Vκ is the
volume of a ball in a space with constant sectional curvature κ. Moreover, if equality
holds for some ball, then this ball is isometric to the ball of radius r in the space
of constant sectional curvature κ.

Comparison inequalities have the following ingredients, all of which are easily
visible in the above example:

• An “interesting” functional, such as arc length, volume, an eigenvalue of the
Laplacian, isoperimetric and Sobolev constants. Discovering a new “interest-
ing” functional is a real achievement.
• A model space, frequently one that is simply connected and has constant

curvature of some sort. The choice of a model space is critical.
• An inequality comparing the functional in the given and model space. Does

equality occur only for the model space itself?
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These inequalities, besides their own intrinsic interest, serve as basic tools in sub-
sequent investigations.

Chapters 1 and 2. cover the basic concepts of Riemannian geometry. While
formally these chapters are more or less self-contained, they are better viewed as a
summary of material learned elsewhere.

Chapter 3: Riemannian Volume. One key result is the volume comparison
theorem mentioned above. A useful long appendix to this chapter discusses the
eigenvalues of the Laplacian along with some related comparison theorems (see
also the author’s earlier volume [Ch] and Buser’s more recent book [Bu]).

Chapter 4: Riemannian Coverings. The main theme here is, for a compact
manifold M , to relate the global growth of the volume V (r) of a ball of radius r on
the universal cover with the size of the fundamental group of M . One defines n(λ)
to be essentially the number of different words one can make in the fundamental
group having length λ. Milnor’s Theorem asserts that if M has nonnegative Ricci
curvature, then its fundamental group grows at most polynomially, while if M has
strictly negative curvature, then its fundamental group has exponential growth in
the sense that n(λ) grows exponentially. The proofs of these and related results
use the comparison theorems of Chapter 3.

This chapter closes with the classical Gauss-Bonnet Theorem for two-dimensional
surfaces. This seems to be independent of the main material in the same chapter;
I am uncertain why the author placed it here rather than in Chapter 2.

Chapter 5: Kinematic Density. Here one uses integral geometry to discuss
geodesic flow. These ideas originated in classical mechanics. A basic result is
Liouville’s Theorem; on the unit tangent bundle Liouville constructed a natural
measure that is invariant under geodesic flow. One application is to the Berger-
Kazdan comparison theorem for the volume of a compact n-dimensional manifold
M with injectivity radius inj(M). It asserts: Vol(M) ≥ cn(inj(M))/π, with equality
if and only if M is isometric to the standard round sphere Sn with radius inj(M).
Here cn(r) is the volume of the standard n-sphere of radius r. If one combines this
inequality with topological results of A. Weinstein (n even) and C. T. Yang (n odd),
one obtains a proof of the Blaschke conjecture that the only wiedersehen manifolds
are the standard round spheres (a complete proof for the two-dimensional case had
been done earlier by L. Green).

Chapter 6: Isoperimetric Inequalities. This chapter discusses generalizations
of the classical isoperimetric inequality L2 ≥ 4πA for a region in the plane with
area A and perimeter length L. The natural generalization to a region Ω in Rn is
the comparison inequality

Area(∂Ω)

Vol(Ω)1−1/n
≥ Area(Sn−1)

Vol(Bn)1−1/n
= nω1/n

n ,

where ωn is the area of the standard unit ball Bn. Note that the left side is invariant
if we magnify Ω by x 7→ λx.

It is not at all obvious how to generalize this from the model space Rn to the
model spaces of the round sphere or hyperbolic space. One difficulty is that these
have no self-similarities generalizing the magnifications of Rn. The author gives
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two approaches, one due to Gromov, the other based on the classical technique of
symmetrization as extended by Figiel-Lindenstrauss-Milman.

For cases more general than the round sphere and hyperbolic space, the author
presents the results of Buser, Croke, and Kanai. The subject is far from closed.

Chapter 7: Comparison and Finiteness Theorems. The basic topics here are
the now classical Rauch comparison theorem and Toponogov triangle comparison
theorem. This material probably would have benefited by appearing much earlier
in the book. Since the author does not present any detailed applications of the
Toponogov theorem, such as to the work of Grove-Shiohama, many readers may
not appreciate its significance and power.

This chapter ends with Cheeger’s Finiteness Theorem: consider the set of com-
pact n-dimensional Riemannian manifoldsM with diameter(M) ≤ d,Volume(M) ≥
V , and |K| ≤ κ; here K is the sectional curvature. Then there is a bound on the
number of diffeomorphism classes of this set in terms of the constants n, d, V , and
κ. In fact, the proof here is by contradiction, so no explicit bound is actually found.
There is a more recent theorem mentioned in the notes. It was found by Grove-
Peterson. They replace Cheeger’s two-sided curvature assumption by only a lower
bound on the sectional curvature, K ≥ κ, and then conclude there are finitely many
homotopy types, the bound depending on the scale-invariant constants n, dn/V , and
κd2.

The strength of Chavel’s book is in presenting interesting current results in such a
way that they are accessible to students. This book would be a splendid supplement
to a text such as the books by do Carmo [doC] or Gallot-Hulin-Lafontaine [GHL]
in a standard course on Riemannian geometry. It is less successful as a stand-alone
introductory text, since the basic material is a bit skimpy. There are too many
“one easily sees”, and a substantial amount of basic material is relegated to the
exercises (an instance is the whole theory of Riemannian submersions at the end of
Chapter 1).

One very useful feature is the “Notes and Exercises”. These are collected at
the end of each chapter and give a broader, more relaxed picture of the subject.
From a technical view, the book has a nice bibliography, but would have benefited
from an index of notation (that would have saved me lots of time) and a more
comprehensive index (Ricci curvature, co-area, isotropy group, pinching, to name a
few items that I sought unsuccessfully in the index, although they are in the book).

I believe the author is setting-up a WWW page concerning this book. For more
information his e-mail address is

iscca@cunyvm.cuny.edu

Note that there is a paperback version available from the publisher for about $20
($24.95 less their 20% standard discount to members of the AMS), thus making it
affordable to students. Readers of this book may also find it fruitful to read Peter
Li’s nice lecture notes [Li]. A number of the same topics are treated but somewhat
differently.
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