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It would be appropriate to begin this review by noting that the book under review
is intended to be the first volume of a two-volume set on Mathematical Scattering
Theory (hereafter abbreviated as MST). The present volume gives, to quote the
preface, “a systematic exposition, while oriented toward concrete applications, of
the method of abstract scattering theory.” Here, abstract may be rephrased as
operator-theoretical. To continue the quote, “In the second volume we intend
to apply these methods to the theory of differential operators, primarily to the
Schrédinger operators.” The second volume has not yet appeared. The first volume
alone is an independent and complete monograph. Nevertheless, with the second
volume to come the author’s view of this field will be before us in a more thorough
form.

Before proceeding, it should be mentioned that there is another MST, that is, the
scattering theory for wave equations originated by P. Lax and R. S. Phillips [LP]
and developed extensively since then. Due to its basically hyperbolic nature, it is
natural to treat this unique theory separately from MST for Schrédinger operators.
The book under review is for MST of Schrodinger type, and we will not comment
on MST for wave equations any further.

In order to place this volume in a perspective among the literature on scattering
theory, a short comment on the history of MST may be in order. The reviewer
apologizes that this has some inevitable overlap with the introduction of this vol-
ume, in which the author presents his version together with a motivation of MST
in a rough explanation of the contents of the volume.

The scattering theory has its origin in physics, in particular scattering phenom-
ena in quantum mechanics. Its central object, the scattering operator, relates the
past asymptotic state of a dynamical system governed by the Schrodinger equation
to its future asymptotic state. To be specific, the Schrodinger equation is given by

d
zau(t) = Hu(t). Here H is the Hamiltonian of the system and, according to von

Neumann’s theory, H is a selfadjoint operator in a Hilbert space. The associated
dynamics is described by the unitary group U(t) = exp(—itH), t € R. In the
scattering theory the dynamics U(t) is compared, when ¢t — +oo, with asymptotic
dynamics, which is denoted by Up(t). In a simple perturbation-theoretic approach
the Hamiltonian H has the form H = Hy + V, where Hj is the free Hamiltonian,
and the asymptotic dynamics is the free dynamics Uy(t) = exp(—itHp). The per-
turbation V is supposed to be small relative to Hy, quantitatively or qualitatively.
A typical and most important H is the Schrédinger operator

Hy=-A, H=-A+YV, both acting in  L?(R3).

Here, V is the operator of the multiplication by a real-valued function V(z) which
is called a potential. It is expected that the scattering occurs if V(z) decays at
infinity sufficiently rapidly.
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Asymptotic states ug of U(t)u are characterized by the relation
(1) U(t)u ~ Up(t)ux, t — +oo.

The wave operator, which maps asymptotic states to the original state, is defined
by

(2) Wi = Wi(HhHo) = tS;lig Ul(—t)UQ(t)PQ,

and the scattering operator, which maps the past asymptotic state to the future
one, by

S = S(Hy, Ho) = Wy (Hy, Hy)*W_(Hy, Hy).

The additional factor Py in (2) is added in order to project out eigenspaces of Hy.
In an early stage of MST it was discovered that the correct P is the projection
onto the space of absolute continuity of Hy. (Except for rare events that H and Hy
have common eigenvectors with the same eigenvalue, (1) with Up(t) = exp(—itHo)
requests that v and uy are orthogonal to eigenspaces of H and H, respectively.
So the scattering theory is a phenomenon associated with continuous spectra.)

The wave operator is a main object of research in MST. W, is isometric on the
range of Py whenever the strong limit in (2) exists. Let us denote the range of W
by Ry. If R+ = R_, then S is unitary. The relation R4 = R_, or a stronger
requirement that R4 are both equal to the orthogonal complements of the span of
eigenspaces of H, is called the completeness of wave operators. The completeness
in the stronger sense implies that H has no singular continuous spectrum and that
the absolutely continuous part of H is unitarily equivalent to that of Hy. At the
first encounter the wave and the scattering operators may look like rather peculiar
mathematical objects. In the course of development of MST, on the contrary,
the problem of the existence and the completeness of wave operators has led the
development of MST and thus opened up the mathematical spectral theory of
Schrodinger operators, which in turn has shown itself to have a surprisingly rich
structure.

MST has two faces. One may be called abstract scattering theory. Here, MST is
a branch of functional analysis or operator theory and finds a strong tie with spec-
tral theory, especially with the perturbation theory of continuous spectra through
the aforementioned unitary equivalence of absolutely continuous parts. The other
face may be called the scattering theory of Schrédinger equations. Here abundant
mathematical features possessed by Schrodinger equations, not necessarily directly
related to the scattering, have been targets of persistent and intensive study. The
equation ranges from that of a simple potential scattering to that of highly compli-
cated systems like N-particle systems.

Concerning the method there are two main approaches in MST. One is called the
time-dependent method, and the other the stationary method. In a time-dependent
approach one deals with the wave operator itself or the asymptotic behavior of
U(t) = exp(—itH) more or less directly. In a stationary approach, which is formally
the Laplace transform of a time-dependent formulation, one deals with boundary
behavior of the resolvent R(z, H) = (H — z)~! in a suitable topology. This ap-
proach for partial differential operators is sometimes highlighted by the name “lim-
iting absorption principle”. This somehow corresponds to the Lippmann-Schwinger
equation famous in quantum mechanical scattering theory.
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A potential V is called short-range if V(x) = O(|z|~%), |z| — oo, with § > 1.
Until around 1970, when the completeness problem was settled for short-range po-
tentials, the abstract scattering theory and the scattering theory for Schrodinger
equations went hand in hand. Except for problems of eigenfunction expansions
the general trend was that criteria obtained in abstract scattering theory are ap-
plied to Schrodinger equations with the aid of some estimates. As the research of
Schrodinger operators proceeded to problems with long-range potentials (i.e., with
0 < 6 < 1) and to problems of N-body systems, main features of the problem can no
longer be formulated in general operator-theoretical terms. One example is the use
of modified free dynamics Uy(t) = exp(¢:(Hp)) in a long-range potential scattering,
where how to choose ¢; is inherent in the system under consideration. Around
the same time two new methods came on the scene. One is the time-dependent
approach by V. Enss [E]. This is a theory for Schrodinger equations and revealed
the effectiveness of studying propagation behavior associated with exp(—itH). (In
fact, the claim was then around that it was the first physically meaningful proof of
the completeness!) The other is an abstractly formulated commutator method, of-
ten called the Mourre estimate [M], which since then has provided powerful means
for various problems of Schrodinger operators. The method combines, somewhat
implicitly, compactness criteria with the commutation relation [P, Q] = —il char-
acteristic to Schrédinger dynamics. Thus, the 1970’s being a transient period, the
swing of the pendulum has been on the side of PDE methods and methods of as-
ymptotic analysis, such as estimates of oscillatory integrals, combined with Enss
and Mourre approaches.

As mentioned at the beginning, the volume under review narrates solely abstract
scattering theory. After a general formulation of MST is given in Chapter 2, which
is of course in time-dependent terms, the emphasis is laid on the side of station-
ary methods. Abstract approaches, as explained above, reached more or less their
present-day form in the early 70’s. In this respect this first volume treats roughly
the first half of the story. (A notable exception is the latter part of Chapter 7.)
Nevertheless, it does not diminish the value of this volume, even viewed as an inde-
pendent book. In fact, though the theory was formed up to the 70’s, a systematic
and thorough treatise on abstract scattering theory is rather scarce. [K] contains
the theory up to the mid 60’s, and [RS] has much of abstract scattering theory,
but scattered in four volumes. There are several books on scattering theory which
lean more to treating Schrédinger operators (e.g., [P], [AJS]). These books contain
some of the abstract methods. Perhaps [BW] is the only single-volume treatise
which contains a thorough and systematic account of the abstract scattering the-
ory. Comparison by the author himself with other books is found in the preface.
We only mention that [P] does not appear in the bibliography of this volume.

Abstract methods, though they may not be the most powerful in each concrete
problem of today, should retain the merit of being universal. For further devel-
opment of the method and possible future use, it is hoped that a single volume
will present abstract scattering theory with all its perspectives. The volume under
review serves this purpose well. It is particularly welcome that the author presents
(1) a general abstract stationary method from his viewpoint and (2) an elegant
story of the so-called trace class theory, including a full account of Krein’s spectral
shift function and trace formula. The book also serves as a systematic introduction
to MST and is certainly a welcome addition to the literature.



470 BOOK REVIEWS

The book consists of eight chapters. Chapter 1 is concerned with preliminary
facts which are beyond a standard course on functional analysis and contains concise
but nice sections on “classes of compact operators”, “the trace and determinant”,
and “the analytic Fredholm theory”.

The basic part of the theory of wave and scattering operators is presented in
Chapters 2 and 3. Chapter 2 also contains a preview of the general stationary
approach.

Chapter 4, “Scattering for relatively smooth perturbations”, deals with two top-
ics, the Friedrichs-Faddeev model and the Kato smoothness. The former is a clas-
sical model from which MST started. There, the perturbation is expressed by a
Holder continuous integral kernel in the spectral representation space. The Kato
smoothness is the first and yet close-to-final smoothness condition in abstract terms.
One big virtue of the smoothness theory, apart from its applicability, is that the
bridge between the time-dependent and the stationary formulation is comfortably
straightforward. The Friedrichs-Faddeev model has not yet been discussed so com-
pletely in a monograph, and it is good to see it here.

The topic of Chapter 5, “The general scheme in stationary scattering theory”, is
the so-called abstract (or axiomatic) stationary method. The aim is to construct an
abstract theory (or rather a framework) pinpointing essential features commonly
present in various situations, from the smoothness situation to the trace class per-
turbation where, in the latter, no kind of smoothness can be expected in general.
There are a few versions of the abstract stationary method, among which one is by
T. Kato and the reviewer [KK]. Here, a systematic presentation is given along the
lines of [BY], which deals with the scattering theory with two Hilbert spaces. Inas-
much as this chapter is a high point in this monograph, the reviewer would have to
add that the chapter is not the easiest to read. Perhaps this is partly because the
author explains the theory first on a formal level in §7 of Chapter 2 and then gives
rigorous exposition or justification in Chapter 5. This is good in giving the reader
a beforehand perspective, but in reading Chapter 5 one has to go back and forth,
which I found a bit annoying.

Chapter 6, “Scattering for perturbations of trace class type”, deals with the
theory that was the first milestone in the development of the abstract scattering
theory. Here, possibly for the first time in a book, the trace class perturbation
theory is presented as an application of the abstract stationary method of Chapter
5. Later in the chapter, a time-dependent proof of E. B. Pearson (1978) is given.

Up to Chapter 6 most of the standard material of abstract scattering theory is
covered, with the author’s own view here and there. Then come two more chapters
unique to this volume. Chapter 7, “Properties of the scattering matrix (SM)”, is
devoted to a thorough discussion of the scattering matrix S()\), a representation of
the scattering operator on an energy shell. Starting from a widely used representa-
tion formula for the scattering matrix, the author examines detailed properties of
S(A), culminating in the proof of a pointwise bound of |S(\) — 1|, [SY], where | |,
is the norm of the operator class S, in the Hilbert space associated with the energy
shell. It is good to see it here as a token of the recent role of abstract stationary
theory.

Chapter 8, “The spectral shift function (SSF) and the trace formula”, is devoted
to the trace formula of M. G. Krein and the Birman-Krein formula on the connection
of the spectral shift function and the scattering matrix. This much-discussed theory,
nevertheless, has never been presented in a monograph in this unified form. This
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chapter will become, together with an expository article [BY2], a standard reference
on the subject. I would say that the last three chapters form another highlight of
this volume. In particular, the expositions in these chapters are the most lucid in
this volume.

“Review of the Literature” at the end of the volume is conveniently of moderate
size. These reviews and the bibliography naturally put some emphasis on Russian
works, in particular, the St. Petersburg School. But this I found useful rather
than unbalanced. Incidentally, [BW] is cited on page 329 with an incorrect refer-
ence number ([3] instead of [30]). I mention this because of the multi-alphabetical
numbering of the book section of the bibliography.

Some adverse comments are due. The first is that, perhaps with the coming
second volume in sight, the author gave no applications to Schrédinger operators
in this volume, even at the level of examples. Inasmuch as the Schrédinger oper-
ator appears in the “Introduction” as a strong motivation to scattering theory, it
is regrettable that a beginning reader could finish the volume without learning any
concrete result on Schrédinger operators. The second comment is that the author
tends to present materials in a general way, i.e., with the least assumptions possi-
ble. Occasionally, this makes the reading somewhat hard. Due to these problems a
reader of this book might perhaps have to be already well motivated to learn scat-
tering theory seriously. There are some, but not very many, misprints and minor
errors, which are easily spotted and corrected. I only mention that on two occasions
(the 4th line of page 75 and the first formula in Lemma 2 on page 251) N should
be U.

Except for the comments above I found that the volume is well organized and
is a fine guide for a serious reader and a good source of information to research
workers in the field. And T look forward eagerly to the publication of the second
volume.

The final comment is on the price. One of my friends reminded me that the
book costs $216 for 341 pages and called attention to the fact that it makes it all
but impossible to assign this volume as a textbook in a course. This price, even
though it is $130 for AMS members, seems exceptionally dear. The book is from
the AMS, and we hope that some thought would be given to this difficulty.
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