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A von Neumann algebra is the commutant in B(H) (the algebra of bounded
operators on a Hilbert space H) of a selfadjoint subset of B(H), in other words,
a *-subalgebra of B(H) that is equal to its own bicommutant. These objects,
whose investigation began with the work of Murray and von Neumann in the 30’s
and 40’s on “rings of operators”, are vastly numerous and diverse, but there is a
good schematic picture of what they look like in the large, and some especially
significant parts of the terrain have been mapped out in great detail. The theory
of von Neumann algebras impinges on the rest of mathematics in such areas as
ergodic theory, group theory, combinatorics, and mathematical physics.

Interest in the cohomology von Neumann algebras goes back about thirty years.
The ingredients of the definition are a von Neumann algebra (or, for the moment, a
Banach algebra)M and a BanachM−bimodule V . Write Ln(M,V) for the space
of bounded n−linear maps fromMn to V , and form the Hochschild complex

V ∂−→ L1(M,V)
∂−→ L2(M,V)→ . . . ,

where the map ∂ : V → L1 is given by (∂v)(x) = xv−vx, and in higher dimensions,

(∂φ)(x1, . . . , xn+1) = x1φ(x2, . . . , xn+1)
+
∑n
j=1(−1)jφ(x1, . . . , xj−1, xjxj+1, xj+2, . . . , xn+1)

+ (−1)n+1φ(x1, . . . , xn)xn+1.

Let H∗(M,V) denote the cohomology of this complex.
What one mainly wants to know about Hn(M,V) in a given situation is whether

or not it vanishes. For orientation, we mention a theorem of Connes [Co] charac-
terizing injective von Neumann algebras as precisely thoseM such that H∗(M,V)
vanishes for all dual normalM−bimodules V . (To say that the bimodule V is dual
normal means that it, likeM, is the conjugate space of a Banach space and that the
module action is appropriately respectful of the w∗-topologies onM and V . Hyper-
finite means having a w∗-dense increasing net of finite-dimensional *-subalgebras.)
The oldest result in von Neumann algebra cohomology is the Kadison - Sakai the-
orem [K], [S], which says that all derivations of any von Neumann algebra M into
itself are inner; that is, if the linear map d :M→M satisfies d(xy) = xd(y)+d(x)y,
then there exists v inM such that d(x) = xv−vx. This says that H1(M,M) = (0)
for all M (even algebraically, since automatic continuity of derivations is part of
the theorem).

The central result in Hochschild cohomology of von Neumann algebras asserts
that H∗(M,M) vanishes for all M whose type II1 part is stable under tensoring
with the hyperfinite II1 factor. Depending on vantage point, this either answers
within epsilon the question for general von Neumann algebras posed many years
ago by Kadison and Ringrose or shows the way to the last frontier. The book is
addressed to readers familiar with the basics of the theory of operator algebras,
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the things one would learn in a first course on the subject. (In particular, no prior
acquaintance with cohomology is assumed.) Given this prerequisite knowledge, the
treatment is wholly self-contained, developing all of the techniques needed to reach
the main result and to go somewhat beyond it. Rather than attempt a synopsis
of the entire story told by Sinclair and Smith, we skip ahead to one of its most
crucial episodes, namely the specialization of the Hochschild complex to completely
bounded maps.

Complete boundedness is a notion that has found a variety of applications in
the operator realm. Given a subspace E of a C∗−algebra A, a bounded linear map
φ : E → B(H) (or into some other C∗−algebra) is said to be completely bounded
if the norms of the maps φn = φ⊗ idn : Mn(E) → Mn(B(H)) are bounded above,
where Mn(E) = E ⊗Mn is the space of n × n matrices with entries in E , with
norm inherited from the C∗−algebra Mn(A). Considering all the induced maps
on matrices simultaneously is a quite natural idea that gives one valuable “elbow
room” in performing calculations. Christensen and Sinclair extended this concept
to multilinear maps in [CS] (see also [PS]) as follows. Suppose F is another operator
space and that φ : E × F → B(H) is bilinear. For each n, define a bilinear map

φn : Mn(E)×Mn(F)→Mn(B(H))

by setting

φn((eij), (fij))rs =
n∑
k=1

φ(erk, fks).

Call φ completely bounded if the norms of the φn’s are bounded above. The
definition of the maps φn mimics matrix multiplication, using φ(·, ·) in place of
operator product; with this in mind, it is clear how to define complete bounded-
ness for multilinear maps with an arbitrary number of arguments. For suitable
M−bimodules V , one can then form the subcomplex of the Hochschild complex
that sees only completely bounded maps and thereby obtain completely bounded
cohomology H∗cb(M,V).

The reason this specialization is advantageous is that the cocycles can be written
in a particularly simple form, thanks to the representation theorem for completely
bounded maps in [CS]. Exploiting this, Sinclair and Smith present and extend
results of Christensen, Effros, and Sinclair [CES] to show that H∗cb(M,M) van-
ishes for all von Neumann algebras M. Now the problem is to get back to norm-
continuous cohomology. This proceeds by way of normal cohomology H∗w, whose
cochains respect the w∗-topologies on the various objects involved and which turns
out to be the same as norm-continuous cohomology in the present setting [JKR].
The main use of the stability hypothesis in the main result is to show that certain
normal multilinear maps are automatically completely bounded. Summarizing in
one line the work of many people over many years, one might write

(0)
always

= H∗cb(M,M)
hyp.' H∗w(M,M)

always' H∗(M,M).

The authors also show that H2(M,M) = H3(M,M) = (0) when M is of type
II1 and has a Cartan subalgebra, and further that this much vanishing in coho-
mology implies thatM’s multiplicative structure is in a certain sense stable under
small perturbations. The book concludes with a brief but informative appendix on
bounded group cohomology.
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Because of its clear and efficient presentation of material from many directions of
research, Hochschild cohomology of von Neumann algebras is recommended reading
even for operator algebraists with only a casual interest in the cohomological side
of their subject.
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