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In recent years, the theory of blowup algebras has been a highly active and
successful area of commutative algebra. Wolmer Vasconcelos’s book therefore comes
as a timely and welcome addition to the literature. It is a fresh and lively account
of classical facts as well as a rich source for recent results and original research not
published elsewhere. The book serves as an excellent reference for experts, but is
also accessible to graduate students with basic knowledge in commutative algebra.

The notion “blowup algebras” refers to algebraic constructions that are loosely
related to the concept of blowing up a variety along a subvariety. To illustrate
this concept, we describe the blowup of a plane curve at a point, which we may
assume to be the origin 0. With x, y denoting coordinates of the affine plane A2

and s, t standing for homogeneous coordinates of the projective line P1 over an
algebraically closed field, say C, consider the subset Y of A2 × P1 defined by the
equation xt = ys. Projecting Y onto A2, one obtains a polynomial map ϕ : Y → A2

with ϕ−1(0) = {0}×P1, which is an isomorphism away from the “exceptional fiber”
ϕ−1(0). The variety Y is called the blowup of A2 at 0. This process has the effect
of replacing the point 0 by a copy of P1, the set of all lines in A2 passing through
0. Now let C ⊂ A2 be an irreducible curve containing 0. In other words, C is given
by an equation f(x, y) = 0, for some irreducible polynomial f(x, y) ∈ C[x, y] with
f(0, 0) = 0. One defines the blowup of C at 0 to be the closure Z of ϕ−1(C\{0}) in
Y . Considering the polynomial map ψ = ϕ|Z : Z → C, one sees that Z is isomorphic

to C away from the exceptional fiber ψ−1(0), with 0 being replaced by the distinct
tangent lines to C at 0. This method of “separating tangents” plays a crucial role in
the process of desingularization. In fact, a celebrated result by Hironaka asserts that
over a field of characteristic zero, singularities of any dimension can be resolved by
blowups. The general definition of blowups uses the notion of Rees algebras: Let R
be a Noetherian ring (in the above example, R = C[x, y]/(f), the ring of polynomial
functions defined on C), and let I be an ideal of R (in the example, I = (x, y)/(f),
the ideal whose common zero is the origin). To I one associates the Rees algebra R,
defined as the subring R[It] ∼=⊕∞

n=0 I
n of the polynomial ring R[t], as well as the

associated graded ring G, which is the factor ring R/IR ∼= ⊕∞
n=0 I

n/In+1. Now
the blowup (of the prime spectrum of R along V (I)) is given by (the projective
spectrum of) R, with the exceptional fiber of the blowup corresponding to (the
projective spectrum of) G.

The theory of blowup algebras tries to investigate various algebraic properties
of R, compare R and G with respect to such properties, and describe the algebra
R in terms of generators and relations. For this purpose it is often helpful to
approximate the Rees algebra by the symmetric algebra S(I) of I, which maps onto
R via a natural epimorphism α : S(I) →R. The symmetric algebra of any finitely
generated R-module E can be characterized in the following way: If {e1, . . . , en}
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is a generating set of E, then S(E) = R[T1, . . . , Tn]/L, where R[T1, . . . , Tn] is a
polynomial ring and L is the ideal generated by all linear polynomials

∑n
i=1 aiTi

with
∑n

i=1 aiei = 0. Thus one obtains an explicit description of R in terms of
generators and relations provided that α is an isomorphism, in which case I is
said to be of linear type (because the relations defining R are linear polynomials).
This leads to the problem of finding conditions ensuring the linear type property,
other than the simple observation that an ideal I in an integral domain is of linear
type if and only if S(I) is a domain. The first one to address this question was
Micali, who showed in the sixties that any ideal generated by a regular sequence is
of linear type [9]; here one says that a sequence a1, . . . , an in R is regular if ai is a
nonzerodivisor on r/(a1, . . . , ai−1) for every i with 1 ≤ i ≤ n. In the late seventies
Huneke introduced the notion of a d-sequence, which greatly generalizes the concept
of a regular sequence, and proved that d-sequences still generate ideals of linear
type [6, 7]. Slightly later, Herzog, Simis, and Vasconcelos developed a homological
device that would turn out to be a powerful tool for studying blowup algebras. They
introduced the “Approximation Complexes” Z. andM., which are finite complexes
of R[T1, . . . , Tn]-modules whose zeroth homology are S(I) and S(I/I2), respectively
[2]. (Under some mild assumptions) they proved that the complex M. is acyclic if
and only if I is generated by a d-sequence, which leads to concrete conditions for
an ideal to be of linear type. The Approximation Complexes fail to be complexes
of free modules, but for large classes of ideals they are sufficiently well behaved to
yield information about the Cohen-Macaulay and Gorenstein properties of R and
G, at least in the presence of the linear type condition.

Besides giving careful consideration to ideals of linear type, the author also ad-
dresses the general case where the epimorphism α : S(I) →R may have a nontrivial
kernel, which needs to be determined if one is to find an explicit presentation of
R. This can be done for special classes of ideals using ad hoc methods largely
based on the notion of a “Jacobian dual”. When computing the kernel of α, it is
also helpful to know beforehand how many homogeneous polynomials are needed
to generate this ideal and what their degrees might be, information that is more
readily available if the rings R or G are Cohen-Macaulay.

Having mentioned Cohen-Macaulayness twice, we wish to explain this notion,
which plays a central role in commutative algebra. A Noetherian ring S is called
Cohen-Macaulay if each of its localizations is Cohen-Macaulay, thus reducing us
to the case where S is local, i.e., has only one maximal ideal m. For such a ring,
the depth, depthS, is defined to be the maximal length of a regular sequence
contained in m, whereas the Krull dimension, dimS, is the maximal length of
a chain of prime ideals in S, diminished by 1. One always has the inequality
depthS ≤ dimS, and S is called Cohen-Macaulay if depth S = dimS. To illustrate
the far-reaching consequences of this notion, let S be a Noetherian local ring of
dimension d containing a field. After passing to the so-called completion of S
and invoking Cohen’s Structure Theorem, we may assume that S has a subring
R = k[[x1, . . . , xd]] which is a power series ring over a field and that S is a finitely
generated R-module. Now S is a Cohen-Macaulay ring if and only if S is free as an
R-module. In other words, Cohen-Macaulayness means that the ring has a trivial
module structure over a ring as simple as a power series ring.

The Cohen-Macaulay property of blowup rings had not been studied much out-
side the realm of ideals of linear type until Huckaba and Huneke turned to this
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problem in the early nineties [4, 5]. To describe their work, let R be a Noether-
ian local ring of Krull dimension d having an infinite residue field. If I requires
more than d generators, then I cannot be of linear type. To remedy the situa-
tion, Huckaba and Huneke pass to a minimal reduction I, thereby lowering the
number of generators of the ideal. The notion of a reduction had been introduced
by Northcott and Rees in the fifties [11]: An ideal J contained in I is called a
reduction of I if the inclusion of Rees algebras R(J) ⊂ R(I) makes R(I) a finitely
generated module over R(J), or equivalently, if Ir+1 = JIr for some r ≥ 0; the
smallest such r is denoted by rJ (I). A minimal reduction of I is a reduction that
is minimal with respect to inclusion, and the reduction number r(I) of I is the
minimum of the numbers rJ (I) where J ranges over all minimal reductions of I.
Every minimal reduction J of I can indeed be generated by at most d elements,
and under suitable assumptions R(J) can be shown to be Cohen-Macaulay. One
should think of J as a “simplification” of I, with r(I) measuring how “closely” the
two ideals are related. If r(I) is “small enough” one might hope that the Cohen-
Macaulay property passes from R(J) to R(I). Indeed, Huckaba and Huneke were
able to treat the case r(I) ≤ 2 (under suitable additional assumptions), and Wolmer
Vasconcelos presents his own elegant proofs of their results, making clever use of
the Approximation Complexes. After the book was completed, several authors
obtained far-reaching generalizations, giving comparatively short proofs of general
sufficient conditions for R and G to be Cohen-Macaulay. That these facts had to
remain unreported simply attests to the vigor and success of the subject. The more
recent results about Cohen-Macaulayness are largely based on linkage theory or,
more generally, on the theory of residual intersections (as a first approximation,
one can say that an ideal K is a residual intersection of I if I ∩K requires as few
generators as permitted by dimR/K). There is yet another reason why the book
devotes a whole chapter to linkage theory: Linkage provides a natural context in
which the Approximation Complexes are well-behaved or, more generally, in which
many results about blowup algebras apply.

We now turn to the relationship between the Rees algebra R and the asso-
ciated graded ring G, exemplified by their respective behavior vis-à-vis Cohen-
Macaulayness. It is easy to see that if R and R are Cohen-Macaulay, then so is G
(at least if I contains a nonzerodivisor) and that the Cohen-Macaulayness of G im-
plies the Cohen-Macaulayness of R (at least if R is local and I 6= R). On the other
hand, R may fail to be Cohen-Macaulay even if G has this property (as can be seen

from the example at the beginning, assuming that ∂f
∂x (0, 0) = 0 = ∂f

∂y (0, 0)). After

the completion of the book, Lipman was able to prove that this phenomenon cannot
occur in case R is a regular local ring (or more generally, a pseudo-rational local
ring), such as a power series ring or a localization of a polynomial ring over a field (or

the ring R from the above example, localized at the origin, as long as ∂f
∂x (0, 0) 6= 0

or ∂f
∂y (0, 0) 6= 0) [8]. His result can be paraphrased by saying that if under the

above assumptions on R, the associated graded ring G is Cohen-Macaulay, then
necessarily r(I) < dimR (unless R is a field). It remains to be seen what further
restrictions the Cohen-Macaulayness of G imposes on the reduction number. This
would provide necessary conditions for the blowup algebras to be Cohen-Macaulay,
which could then be combined with the sufficient conditions described above.
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Besides Cohen-Macaulayness, the book investigates other algebraic properties of
R and G, such as Serre’s conditions (Sk), Gorensteinness, integrality, and normal-
ity. A similar program is carried out for the symmetric algebra S(E) of a finitely
generated R-module E. How difficult and intriguing the relationship is between
E and S(E) can be seen from the “Factorial Conjecture”, which asserts that the
factoriality of S(E) imposes severe conditions on the module E: If R is a regular
local ring and S(E) is a unique factorization domain, then does E have projective
dimension at most 1; i.e., is there an exact sequence 0 → F1 → F0 → E → 0
with F0, F1 free R-modules [3]? (Conversely, if the projective dimension of E is
at most 1, one has a complete characterization of when S(E) is a unique factor-
ization domain.) This intriguing question has been answered in many cases but
remains open in general. On the other hand, passing to the graded bidual B(E) of
S(E), one always obtains a unique factorization domain, but this ring may fail to
be Noetherian, as was shown by Roberts [13].

A construction similar to the one that yields B(E), but applied to the Rees
algebra of a (prime) ideal I, yields the symbolic Rees algebra Rs of I. This algebra
is defined as Rs =

⊕∞
n=0 I

(n)tn ⊂ R[t], where I(n) = {x ∈ R|ax ∈ In for some
a ∈ R\I} denotes the n-th symbolic power of the prime ideal I (which is the I-
primary component of the ordinary n-th power). One always has R ⊂ Rs, but
again, the larger algebra may fail to be a Noetherian ring, or equivalently, a finitely
generated R-algebra. It is this possible lack of Noetherianness that relates the
symbolic Rees algebra to two important questions: Hilbert’s Fourteenth Problem
and the set-theoretic generation problem. Hilbert’s Fourteenth Problem can be
paraphrased as follows: If R = k[x1, . . . , xn] is a polynomial ring over a field and
if K is a subfield of the field of rational functions k(x1, . . . , xn) which contains k,
then is the intersection R∩K a finitely generated k-algebra? In the fifties, Nagata
produced a counterexample based on the fact that the symbolic Rees algebra of
a certain ideal I is not Noetherian (his ideal I is not prime though; it is the set
of polynomials vanishing on 16 general lines in A3 passing through 0) ([10]; see
also [12]). In its simplest form, the set-theoretic generation problem addresses the
question of when a variety V ⊂ An of codimension c = n − dimV is, locally as
a set, the intersection of c hypersurfaces, the codimension being the intuitively
expected number of hypersurfaces needed. The corresponding algebraic question
can be formulated as follows: Let R be a regular local ring with infinite residue
field, and let I be a prime ideal of codimension c = dimR − dimR/I; when is

it possible to find c elements f1, . . . , fc in I so that I =
√

(f1, . . . , fc), where√
J = {x ∈ R|xn ∈ J for some n > 0} denotes the radical of an ideal J? Cowsik

and Vasconcelos observed that this is indeed possible for dimR/I = 1 (i.e., for
curves) as long as Rs is Noetherian, triggering the question of whether the symbolic
Rees algebra of prime ideals in regular local rings might always be Noetherian. This
problem has a negative answer in general even if R is a power series ring over a field,
as was shown by Roberts and by Goto, Nishida, and Watanabe in the early nineties
[13, 1]. The latter authors even produce counterexamples with dimR/I = 1. To
describe one of their examples, consider the subring S = k[[t25, t29, t72]] of the power
series ring k[[t]] over a field, and let I be the kernel of the natural map from the
power series ring R = k[[x, y, z]] onto S; then the symbolic Rees algebra Rs of I
is not Noetherian if char k = 0. On the other hand, Rs is Noetherian whenever
char k > 0, a fact that is actually used in the proof of non-Noetherianness in
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characteristic 0 [1]! These fascinating developments are reported in the book under
review, as well as various positive results concerning the Noetherian property of
Rs.

This review gives a small sample of the numerous topics and viewpoints presented
in the text. Interested readers should have a closer look at this excellent book.
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