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Given an algebraic number field K, the main objects of study are the ring of in-
tegers OK , the class group Cl(K), and the unit group E(K) = O∗K . All these arith-
metical objects are classical. Instances of both Cl(K) and E(K) played prominent
roles in Kummer’s groundbreaking progress on Fermat’s Last Theorem. Kummer
took K to be the p-th cyclotomic field Q(ζp) with ζp = exp(2πi/p) and p (an odd
prime) the exponent in the Fermat equation, and he proceeded to prove that FLT
holds for the exponent p if the class number h(K) (i.e. the order of Cl(K)) is prime
to p. The prime p is called regular in this case. Here already one can profitably use
Galois module structure. Let G be the Galois group (that is, the group of automor-
phisms) of K over Q. It is easy to describe G: in fact G = {σ1, . . . , σp−1} where σi
is characterized by σi(ζp) = ζip. All the arithmetical objects attached to K which
we have seen so far are acted on by G, so K, OK , Cl(K), and E(K) are Z[G]-
modules, the first two being written additively, and the other two multiplicatively.
Consider now D, the p-primary part of the finite abelian group Cl(K). Kummer’s
regularity condition we just mentioned says that D is zero. Now D is a module over
R = (Z/(pN ))[G] for N appropriately large, and the ring R can be shown to admit
p− 1 orthogonal idempotents e0, . . . , ep−2 which sum to 1. Accordingly, D is the
direct sum of e0D, . . . , ep−2D, and one has the following result (due to Brückner,
Iwasawa, and Skula independently, using previous work of Eichler):

if eiD 6= 0 for at most
√
p− 2 indices i, then the first case of FLT holds for p.

(Remark: In actual fact, for every p less than four million, eiD 6= 0 happens for at
most seven indices i.) The condition eiD 6= 0, which can be called “representation-
theoretic”, happens to have a simple arithmetic interpretation for odd i 6= 1 (but
the proof is highly non-trivial): eiD 6= 0 iff p divides the numerator of the Bernoulli
number Bp−i. The easier direction (only if) is due to Herbrand, and the other to
Ribet. The proof uses L-functions and modular forms among other things.

Kummer also had to consider units, and a certain subgroup C of E(K), the
so-called cyclotomic units, as well. He proved that the index of C in E(K) equals
the class number of K+, the maximal real subfield of K. Again, the ring R and its
decomposition can be used to obtain a more precise conjecture, a special case of
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the Gras conjecture, proved in this case and more generally by Mazur, Wiles, and
Greenberg. It relates the R-module structure of the p-primary parts of the groups
Cl(K+) and E(K)/C.

The subject of “multiplicative Galois module structure” is, therefore, the study of
class groups, unit groups, and related entities, as modules over suitable group rings
of Galois groups. One always starts with a G-Galois extension K/F of number
fields, with F = Q being an important special case. It would probably be too
ambitious a goal if one aimed for a precise description of the isomorphism class of
E(K) and Cl(K) over Z[G] in full generality. We hope to explain what one could
reasonably ask, and which results one may expect.

Setting aside class groups for the moment, let us begin with the first general
result about E(K). This is Dirichlet’s theorem, and in its original form no Galois
group intervenes at all. The theorem states that E(K) modulo its torsion subgroup
µ (the group of all roots of unity in K) is Z-free of rank r = r1 + r2 − 1, with r1
(resp. r2) being the number of real embeddings (resp. half the number of complex
embeddings) of the field K. If K is G-Galois over Q, then either all embeddings are
real and r = [K : Q]−1, or all embeddings are complex and r = [K : Q]/2−1. In the
former case there is a “natural” Z[G]-module of rank r, to wit, the augmentation
ideal I(G), generated by all σ − 1, σ ∈ G. It would be unreasonable to expect
E(K)/µ to be isomorphic to I(G) in general, but Artin and Herbrand proved (in
this situation) that E(K) always contains a submodule of finite index isomorphic
to I(G). (In more learned terms: Q⊗Z E(K) ∼= Q⊗Z I(G).) In the case where all
embeddings are complex, or when F is not Q, I(G) may be suitably replaced, as
we shall explain shortly.

One of the goals of the theory is to understand as well as possible the Z[G]-
structure of E(K) and of Cl(K). It became apparent early on that one also has
to consider certain enlargements ES(K) which are called S-unit groups; ES(K)
is the group of all x ∈ K∗ which are locally a unit at all v not in S. Here S
is always supposed to be a finite set of places of K containing S∞, the set of
archimedean (= infinite) places. There are also S-class groups ClS(K); if one
chooses the set of places S sufficiently large, ClS(K) will be trivial, and ES(K)
incorporates in a certain way both E(K) and Cl(K). Most of the theory deals
with ES(K) with certain “largeness” conditions imposed on S which we shall not
attempt to explain. Similarly as above, one always has a standard module ∆S, the
kernel of the augmentation map ZS → Z which sends

∑
s∈S zss to

∑
s∈S zs, and

this module satisfies Q⊗Z ∆S ∼= Q⊗ZES(K). For S = S∞ and F = Q one recovers
∆S = I(G).

Before turning to Alfred Weiss’ book, let us try to give some further background
information on the subject. First of all, there is also the additive theory founded
by Fröhlich. One of the most prominent results in that theory (and perhaps in
algebraic number theory) is Taylor’s proof of Fröhlich’s conjecture. This essentially
describes for tamely ramified extensions K/F the Z[G]-module structure of OK in
terms of data (root numbers) which come from Artin L-functions. In a certain way,
the multiplicative theory is an outgrowth of the additive theory, and there is a lot
of interaction between the two.

The theory of L-functions (Dirichlet, Artin) is always in the background. This is
perhaps already clear from the historical origins: the Bernoulli numbers mentioned
above are linked with special values of Dirichlet L-series, and so are logarithms of



BOOK REVIEWS 175

cyclotomic units. The latter phenomenon led to the Stark conjectures, a topic also
treated in the book under review.

Next we observe that unit groups have local counterparts. For any G-Galois
extension K/F of a p-adic field F , one can look at the Z[G]-modules K∗ and U(K)
(local units). The local situation is certainly simpler than the global one. However
it is by no means trivial, and there are beautiful results by Borevič, Jannsen,
Wingberg, and others. (Perhaps these might have been mentioned in the book
under review.) Without entering into the details, let us just say that these results
are obtained using a fair amount of homological algebra. In the case ζp 6∈ K, one
obtains for example that K∗ becomes on p-completion isomorphic to a first syzygy
(kernel of a projective resolution) of Ip(G), the augmentation ideal of Zp[G].

This brings cohomology into play. Class field theory permits (at least) an analytic
approach (L-functions) and a cohomological approach. It comes as no surprise that
class field theory also enters the stage. In formulating the multiplicative Chinburg
conjecture (which we shall not do here) it is crucial to use the full cohomological
machinery of class field theory. This conjecture of Chinburg does not exactly predict
the isomorphism class of ES(K); it makes predictions about certain projective Z[G]-
modules associated to it.

As the reader can see, we are talking about a subject with deep roots in classical
algebraic number theory. It has many ramifications, and it is partly very technical.
There are some very general conjectures (notably of Stark, and of Chinburg, with
numerous variations, and they are, again, rather technical to formulate). Then
there are some nice results, and a lot of room for future results. Let us just discuss
two questions:

1) If one identifies two Z[G]-modules M and N if their p-completions are iso-
morphic for all prime numbers p (“M and N in the same genus”), does this “unfo-
cussing” allow us to describe ES(K)?

The answer is essentially yes, and this is well explained in the book. One of the
invariants used to describe ES(K) is, however, complicated and probably very hard
to get at.

2) (This is intentionally a bit vague.) The identification process in 1) is almost
the same as disregarding arbitrary projective direct summands (considering M and
N up to “homotopy”). On the other hand, Chinburg’s conjecture makes predictions
about certain projective modules which come with ES(K). Thus, given that the
answer in 1) is yes, can we say more if we assume Chinburg’s conjecture to be true?

The answer is: yes, sometimes. If F = Q, G is cyclic of odd order, and Chinburg’s
conjecture holds for K/F , then if S satisfies a certain technical condition, ES is
Z[G]-isomorphic to ∆S ⊕ µ. (We recall that µ is the group of roots of unity in
K, and ∆S was explicitly defined above.) This is in a certain sense the strongest
conceivable result.

There is a variety of other results in the book under review, but let us rather
try now to describe the book as a whole. The subject is a fairly young one, and
the author does a very nice job of explaining the main problems, conjectures, and
methods. A reasonable amount of background material (homological algebra, Z[G]-
modules, class field theory) is also presented briefly or sketched. Highlights include:
the Gruenberg-Weiss theory of envelopes, the multiplicative Chinburg conjecture,
Stark’s conjecture, and Tate’s proof of the latter for Q-valued characters. At the
end, the author presents a very instructive example: K = Q(ζp), which takes us
back to the beginning of this review.
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Let me say a few words about the presentation. This book was not written with
a general audience in mind. It retains to some extent the lively but terse style
of the lectures from which it originated, and these lectures were aimed mainly at
specialists. Thus one needs a fair amount of prerequisites and experience to read
the book. Conscientious reading entails going back and forth incessantly because of
the many cross-references. For example, references and comments on the literature
are all in the last chapter. Many of the hints and allusions in the first chapter
are somewhat hard to follow unless one knows the book already. I also feel that
perhaps the proof of the very important Theorem 3 should not have been omitted.

After these minor comments it should be stressed that no comparable work exists
in the literature, and that we should be thankful to have this book, which is at the
same time an introduction, and a report on the state of the art, written by one of
the leading experts. (The recent proof of the so-called Strong Stark Conjecture for
K/Q abelian, by J. Ritter and A. Weiss himself, came too late to be included in the
book.) Even non-experts with some background in algebra should be able to profit
from browsing in this book, which will be a standard reference for a long time to
come.
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