
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 35, Number 2, April 1998, Pages 161–169
S 0273-0979(98)00741-1

3-Transposition groups, by Michael Aschbacher, Cambridge University Press, 1997,
260+vii pp., $49.94, ISBN 0-521-57196-0

We begin with a quote from Daniel Gorenstein, the prime force behind the
classification of finite simple groups:

[12, p. 22] To the nonexpert, the name Bernd Fischer is known solely for
its connection with a number of sporadic simple groups, but to the prac-
titioner, he is recognized as the founder of internal geometric analysis
. . . a fundamental general technique for studying simple groups, which
can reasonably be regarded as second in importance for the classification
only to local group-theoretic analysis.

In contrast to local analysis, Fischer’s work appears as a personal
creation, and aspects of its subsequent development have an almost
magical quality. . . . in Fischer’s case, originality begins with the very
question he raised:

Which finite groups can be generated by a conjugacy class of
involutions, the product of any two of which has order 1, 2, or
3?

Here an involution is an element of order 2, and a class as described is called a con-
jugacy class of 3-transpositions. The group it generates is then a 3-transposition
group. Aschbacher’s excellent book presents a proof of Fischer’s elegant and re-
markable theorem of classification and goes on to describe many properties of the
groups that arise, particularly the three sporadic Fischer groups. The book is bro-
ken into three parts. The first presents Fischer’s classification, the second deals
with existence and uniqueness issues for the sporadic Fischer groups, and the third
details their local structure.

The first one hundred pages of the book present an essentially complete proof of
Fischer’s theorem, which classified all finite 3-transposition groups G with simple
derived subgroup G′ and trivial center (Z(G) = 1). The prerequisites are minimal
— a basic algebra course plus some material from Aschbacher’s text [4] (most of
what is needed being repeated here in a preliminary chapter). It is remarkable that,
in the field of finite group theory where proofs are famous for being long and com-
plicated, this pivotal result can be given an elementary proof in a moderate amount
of space. Even more surprising is that, although the theorem was announced nearly
thirty years ago, Aschbacher’s book is the only place to find a complete proof, pub-
lished in one spot. Fischer’s original version appeared as mimeographed lecture
notes printed by Warwick University in the early 1970’s, and later he published
only the first part of his argument [11]. There have been subsequent treatments,
most notably a succession of papers written by Richard Weiss in collaboration with
others and culminating in [20]. M.-M. Virotte-Ducharme [18] and F. Zara [21] re-
turned to and extended Fischer’s work in their largely unpublished theses. (Related
work has been done by H. Cuypers and the reviewer [8].)
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Fischer first came to this problem through his work in the early 1960’s on fi-
nite distributive quasigroups — finite sets endowed with a binary multiplication for
which the right and left multiplication maps are not just permutations (the defining
property for a quasigroup) but actual quasigroup automorphisms. His main result
[9, Hauptsatz] was that the group generated by the conjugacy class of automor-
phisms composed of right multiplications is solvable. In his proof, consideration of
a minimal counterexample led to the case where all the multiplication mappings
have order 2 and all pairs have product of prime power order, for some fixed prime
p. For such a conjugacy class D of maps and the finite group G = 〈D〉 (the angle
brackets indicate that G is generated by D), he was able to prove that G has a nor-
mal p-subgroup of index 2 [9, Satz 4.1]. (At roughly the same time, Glauberman
was considering similar questions for loops [13] and so was led to his important
Z∗-theorem [14].) The case p = 3 was the most difficult.

Fischer next turned to a related problem. Suppose each involution of the con-
jugacy class D in a finite group is allowed to commute with exactly one other of
its conjugates and have product of p-power order with all the rest. The conclusion
[10] is that p equals 3, the group generated is a symmetric group of permutations
on 4 or 5 letters, and the class of involutions is the transposition class — those
permutations which exchange two of the letters and leave the others fixed.

The final step was then natural. Fischer considered a conjugacy class D of
involutions in a group such that pairs of elements from the class either commute
or have product of order 3. The obvious example is the transposition class of
a symmetric group, Sn, acting on a set of arbitrary size n. In deference to the
symmetric examples, the class D is called a class of 3-transpositions. The group
generated, G = 〈D〉, is a 3-transposition group. (This definition is the same as that
given above — two involutions are equal if and only if their product has order 1,
and distinct involutions commute precisely when their product has order 2.)

Initially Fischer suspected that symmetric groups would provide the only ex-
amples of 3-transposition groups, but Roger Carter pointed out that this is not
so. Indeed, the reflection class of any finite Weyl group with simply laced diagram
is a 3-transposition class, the groups of type An providing the symmetric exam-
ples again. In particular, the Weyl group W (E6), a six-dimensional orthogonal
group over the field with two elements, GF (2), is a 3-transposition group that is
not symmetric. This suggests, as is the case, that the class of transvections in
any orthogonal group over GF (2) is a 3-transposition class. The same is true of
the transvection classes in symplectic groups over GF (2) and unitary groups over
GF (4). The Weyl group W (E6) is also an orthogonal group of dimension 5 over
GF (3), and the reflection classes of orthogonal groups over GF (3) provide the last
of the four non-symmetric, classical families of 3-transposition classes. Fischer’s
theorem states that, for a finite 3-transposition group with simple derived sub-
group G′ and trivial center Z(G) = 1, these five classes provide the only examples,
except for three exceptions, which Fischer denoted M(22), M(23), and M(24). Of
these, M(22) and M(23) are simple, while M(24) has as a subgroup of index 2 its
simple derived subgroup M(24)′, also called F24 in Aschbacher’s book. These three
simple groups are sporadic, in the sense that they are not members of the natu-
ral infinite families of finite simple groups — the alternating groups, the classical
groups, and the exceptional groups of Lie type.

The proof of Fischer’s theorem, as presented by Aschbacher, in general follows
Fischer’s original outline. The approach can be thought of as a microcosm of the
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general classification of finite simple groups, proceeding by induction first to identify
the structure of an involution centralizer and then to characterize each group by
that data. (Here the centralizer of an element x in the group A is the subgroup of all
elements which commute with x and is denoted CA(x).) For a group G generated
by the 3-transposition class D, two basic observations are crucial — any non-trivial
quotient of G is again a 3-transposition group, and, for any subgroup H of G, the
set H ∩D is a union of 3-transposition classes in H .

Assume, as in Fischer’s theorem, that G has trivial center, that G′ is simple, and
that G is generated by the 3-transposition class D. The centralizer H = CG(d) of
the 3-transposition d from D is a proper subgroup of G, so induction allows the
possibility of identifying the subgroup 〈H ∩D〉 and reconstructing G from it. The
problem with this approach is that the number of initial possibilities for 〈H ∩ D〉
is unmanageable.

The most fundamental difficulty is that H ∩D might not be a single conjugacy
class in H but might be the disjoint union of several H-classes. Fischer responded
to that with his inspired

Transitivity Theorem. Let G be a finite group generated by the 3-
transposition class D with G′ simple and Z(G) = 1. Then, for each
d ∈ D, the subgroup CG(d) (and even its subgroup 〈D ∩ CG(d)〉 ) is
transitive on each of the sets

Dd = {e ∈ D | the order of de is 2}
Ad = {e ∈ D | the order of de is 3}.

Here the permutation action of G and its subgroups on D is the natural conjugation
action. Thus G is transitive on the class D, and transitivity on Dd is equivalent to
the statement that Dd is a single conjugacy class of CG(d).

Fischer introduced a geometric setting for the Transitivity Theorem. Let D(D)
be the commuting graph of the set D — the graph with vertex set D and edges
connecting those pairs of distinct vertices that commute. Then Dd is the set of
neighbors of d, and Ad is the set of non-neighbors. The Transitivity Theorem says
that G acts on D(D) as a group of automorphisms that is transitive on vertices,
edges, and non-edges. Fischer went on to define in a purely combinatorial manner
a class of graphs called triple graphs to which these commuting graphs belong and
whose members, conversely, always come from 3-transposition groups as in the
theorem.

At this point the classification can begin in earnest. For the purpose of this
review, we introduce a piece of terminology. Let H be a 3-transposition group
with trivial center and L a subgroup of H generated by 3-transpositions of H .
We say that the 3-transposition group G with 3-transposition class D is of local
type F(H, L) if, for some pair d, e ∈ D with de of order 3, we have 〈Dd〉/Z(〈Dd〉)
isomorphic to H by an isomorphism which takes 〈Dd ∩De〉 to L. If we do not wish
to specifiy L, then we merely say that G has local type F(H). (Notice that, under
the Transitivity Theorem, the actual choices of d and e do not affect the local type.)
A crucial point in the proof of Fischer’s theorem is the following observation, whose
spirit can be found in Fischer’s Warwick notes, made precise by Weiss [20].
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The Uniqueness Principle. For any pair H and L, there is (up to
isomorphism) at most one 3-transposition group G of local type F(H, L)
with trivial center and G′ simple.

As mentioned before, the candidate groups H are identified by induction. The job
is to show that suitable L can be found only when there is a known group with that
local type. Then the Uniqueness Principle says that the only possible conclusions
are those already known, proving the theorem.

We discuss an example, starting with an easy, combinatorial lemma.
Lemma. Let L be a subgroup of the symmetric group Sn, for n ≥ 6,
that is generated by transpositions and such that, for any transposition
f in L, the transpositions in L which are different from but commute
with f generate a subgroup Sn−3. Then either L is a subgroup Sn−1 or
n = 6 and L is a subgroup S3 × S3.

Consider now a 3-transposition group G = 〈D〉 of local type F(Sn, L) for some
n ≥ 6. What do we know of L? It is 〈Dd∩De〉 for a pair d, e with product of order
3. Choose a 3-transposition f of L. Then by assumption 〈Df 〉 is isomorphic to Sn

and contains d and e. Therefore 〈(Dd∩De)∩Df 〉 can be calculated within Sn as the
common centralizer of two non-commuting transpositions, that is, a subgroup Sn−3.
We conclude that, as a subgroup of 〈Dd〉 (also isomorphic to Sn), the subgroup L
satisfies the hypotheses of the lemma and so is either Sn−1 or is S3 × S3 for n = 6.
Now we note that Sn+2 has local type F(Sn, Sn−1) while W (E6) has local type
F(S6, S3 × S3). From the Uniqueness Principle, we conclude:

Theorem. Let G be a 3-transposition group with trivial center, G′ sim-
ple, and of local type F(Sn) with n ≥ 6. Then G is isomorphic either
to Sn+2 or to W (E6) for n = 6.

This is the kind of result that finite group theorists love; in the process of prov-
ing the natural characterization theorem for the symmetric groups, the anomaly
W (E6) forces itself upon us. There is of course an explanation. The group S6 is
isomorphic to the symplectic group Sp4(2) and so is a transvection centralizer in
both of the orthogonal groups O+

6 (2) (isomorphic to S8) and O−
6 (2) (isomorphic

to W (E6)). (As an exercise, the reader might complete the argument for this par-
ticular theorem using only Weyl groups and the Transitivity Theorem but not the
Uniqueness Principle.)

The general proof proceeds by considering groups of local type F(H) for the
various possibilities H . It is not possible to assume that H ′ is simple (the most
favorable inductive situation), but Fischer proved that, failing that, H either has a
non-central normal 3-subgroup or a non-central normal 2-subgroup. A brief argu-
ment proves that the first case leads only to S5. The second case is more serious,
since it actually arises for the symplectic groups over GF (2) and the unitary groups
over GF (4). There it is possible to recognize the underlying “polar space” geom-
etry within the commuting graph. Each transvection is associated with a singular
1-space of the geometry, and the singular 2-spaces are constructed as specific cliques
(complete subgraphs) of the commuting graph. This is of considerable help in set-
ting up the appropriate application of the Uniqueness Principle that gives rise to
these groups.

Once those H with non-central normal 2- and 3-subgroups have been handled, it
remains to consider the groups in the conclusion to Fischer’s theorem as candidates
for H . This machine works very effectively as we move through the classical groups,
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but again there is one anomalous case, which occurs when H is U6(2), a unitary
group in dimension 6 over GF (4).

Theorem. Let G be a 3-transposition group with trivial center, G′ sim-
ple, and of local type F(U6(2)). Up to isomorphism there is at most one
such G. It is simple and not a classical group.

In fact, G is the first sporadic Fischer group M(22). Once we have found evidence
for M(22), we must consider local type F(M(22)) from which emerges at most
one group, namely M(23). Similarly F(M(23)) leads to at most one group M(24),
while F(M(24)) leads nowhere at all.

At this point, all leads have been exhausted, and the elegant and elementary
proof of Fischer’s Theorem presented by Aschbacher is complete. The proof occu-
pies the first five chapters of the book. Anyone who wishes to see in action many
of the techniques and much of the spirit of the classification of finite simple groups
can find no better introduction than these chapters. In particular, they would be
suitable and stimulating for an intermediate graduate-level course.

What of Gorenstein’s remarks? Certainly Fischer’s theorem is important for its
location of three of the twenty-six finite sporadic simple groups. But an equally
important consequence was a change in the psychology of finite group theory. “In-
ternal geometric analysis” is basically a point of view under which some part of the
subgroup structure of a group is viewed as a geometry upon which the group acts
as a group of automorphisms. Typically, the objects of the geometry are conjugacy
classes or cosets of certain subgroups with incidence determined by a specific group
theoretic relationship. The commuting graph of a 3-transposition class is a prime
example. Other group theorists had previously thought along these lines, most no-
tably Brauer [6] and Suzuki [15], whose involution centralizer characterizations of
PSL3(q) proceeded by reconstructing internally the projective plane upon which
each group acts. Although Brauer did not publish his results until the mid 1960’s,
he announced a version in his address at the 1954 International Congress in Amster-
dam.1 He particularly remarked upon the geometric nature of his proof. Motivated
by this, Brauer defined (in the language of metric spaces) the commuting graph
on the non-identity elements of any group. He stated that it (or its subgraph of
involutions) would be important “as a kind of geometry in which the fundamental
group is given by” the group itself, acting via conjugation.

Brauer and Suzuki’s proofs were primarily character theoretic, with the geomet-
ric arguments only appearing late and at a point where the group order was already
known. In contrast, commuting graphs and triple graphs were at the focal point of
Fischer’s arguments. The fact that he was able to draw profound results out of an
internally created geometry as elementary as the commuting graph was compelling.
The impact was particularly dramatic on young group theorists of the early 1970’s.
Aschbacher’s first significant work in group theory [1] was his extension of Fischer’s
results to “odd transpositions”. Aschbacher’s critical Standard Form Theorem and
its proof [2] have their roots in Fischer’s Transitivity Theorem. Fischer’s student
Franz Timmesfeld also extended Fischer’s results considerably by concentrating on

1This address was the starting point of modern finite simple group theory. Brauer’s report
began, “The theory of groups of finite order has been rather in a state of stagnation in recent
years.” Then at the bottom of page 3 he posed the defining and vitalizing problem: “Given a
group N containing an involution j in its center. What are the groups G containing N as a
subgroup such that N is the normalizer of j in G?”



166 BOOK REVIEWS

the symplectic and unitary examples, where the 3-transpositions are in fact long
root elements in the standard Lie theoretic setting. Timmesfeld has gone on to de-
velop an extensive theory of “abstract” root elements and subgroups where, starting
with a small number of elementary and elegant axioms, large numbers of Lie type
and related groups (even infinite ones) can be characterized [17].

The work of Aschbacher and Timmesfeld (and others) demonstrated that many
already common techniques, such as weak closure methods and TI-sets, are funda-
mentally geometric in nature. This viewpoint is particularly evident in their work
on the O2-extraspecial problem [3], [16]. The metaphor of internal geometry for
subgroup structure has become dominant. It illuminates older methods and lies at
the heart of many recent techniques in finite groups such as the amalgam method,
p-local geometry, and the simplicial approach to uniqueness. This last plays a role
in Part II, where it is used in the study of the commuting graph for M(23) and
M(24).

Part I of Aschbacher’s book closes with Chapter 6, entitled “Beyond Fischer’s
Theorem”. Here Aschbacher discusses related matters such as Francis Buekenhout’s
elegant geometric axioms for “Fischer spaces” (another case where the original work
is unpublished). Aschbacher presents an early result of M. Hall, Jr., characterizing
a certain Steiner triple system of order 81 that is related to the quasigroup and loop
origins of the 3-transposition problem. (As an illustration of interaction among the
various parts, this result of stand-alone geometric interest is also used to prove
certain basic 3-transposition properties in Chapter 3 and to construct a 3-local
subgroup of M(23) in Chapter 14.) Chapter 6 additionally discusses some of the
extensions to Fischer’s theorem, particularly the work of Timmesfeld on abstract
root elements mentioned above. Also discussed is the work of H. Cuypers and
the reviewer culminating in [8], which classifies general 3-transposition groups with
trivial center and requires neither finiteness nor simplicity for G′. (This of course
includes the finite groups of Fischer’s theorem, but several of the most difficult
cases are handled only by quoting arguments of Fischer, Weiss, Virotte-Ducharme,
and Zara.)

For several years Aschbacher has worked on a program for organizing the theory
of the sporadic finite simple groups. There are three basic parts to his program for
each group — existence, uniqueness (given a suitable involution centralizer), and
local structure (as revealed in the normalizers of all subgroups of prime order). In
his previous book [5] he presented basic material in aid of this program and carried
through the steps for five of the sporadic groups. The second and third parts of
the present book do this for the three sporadic Fischer groups. As such, these
parts are more demanding and technical than the first and are aimed at a more
specialized audience. Even so, almost all the background comes from Aschbacher’s
earlier books [4], [5], and the most important matters are presented in preliminary
chapters to each part. (The sole exception is appeal to Glauberman’s Z∗-theorem
[14].)

Part II is devoted to existence and uniqueness for these groups. Uniqueness
comes from the characterizations of Part I. Aschbacher proves existence by locating
the groups as sections of the sporadic simple group known as the Monster, having
already constructed that group in [5]. (A section of a group is a homomorphic image
of a subgroup.) The argument and interaction are delicate, since the hypotheses
of Fischer’s characterization are not readily verified within the Monster. In any
case, the global 3-transposition hypothesis is not a suitable local hypothesis for
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uniqueness questions. Aschbacher deals with this by examining a number of related
situations, each with its own virtues and disadvantages, and then proving that they
coexist.

Following Aschbacher, we say that a group has type M(22) if it is a 3-transposi-
tion group with trivial center and local type F(U6(2), L) (as above). It turns out
that there is only one possibility for L, which is essentially a unitary group in di-
mension 4 over GF (9) and is denoted Z2/U4(3)/Z3. The specification of L becomes
part of Aschbacher’s definition of type M(22) as well. Next a group has type M(23)
if it is a 3-transposition group with trivial center and local type F(M(22), L) (for
the appropriate and uniquely determined L), and a group with trivial center has
type M(24) if it is a 3-transposition group of local type F(M(23), L), again for
appropriate and unique L. Finally, a group has type M(24)′ if it is the derived
subgroup of a group of type M(24). The classification theorem of Part I guarantees
uniqueness for any group of type M(22), M(23), M(24) or M(24)′, but it is silent
as to whether such groups exist.

Aschbacher’s existence proof for the Fischer groups begins with a section of the
Monster whose structure resembles that of M(24). Specifically, it has a simple
subgroup of index 2 containing an involution z whose centralizer C(z) has three
properties:

1. C(z) has a normal extraspecial subgroup Q of order 213 which con-
tains its own centralizer in C(z),
2. C(z)/Q is a group Z2/U4(3)/Z3,
3. Q contains conjugates of z other than z itself.

Aschbacher says that any finite group satisfying these three properties has type F24.
A group that has an index 2 subgroup of type F24 (and also satisfies an appropriate
non-degeneracy condition) is said to have type Aut(F24). In view of the Monster
section, existence is established for such groups, but uniqueness is unclear. Groups
of type M̃(22), M̃(23), and M̃(24) are each defined to have an involution whose
centralizer models that of a 3-transposition in the corresponding group, but no
global assumption on the class is made.

In the successive Sections 31, 32, and 33, we find that type M̃(n) implies type
M(n) for n equal to 22, 23, 24, respectively. In particular, if groups of type M̃
exist, then they are unique since they come from the groups M already known to
be unique by Part I. The group M(24) is encountered again in Section 35, where it
is shown that a group of type Aut(F24) also has type M(24). In particular, thanks
to the Monster, a group of type M(24) does exist, and therefore so do those of type
M(22) and M(23). Furthermore, groups of type Aut(F24) are unique, since they
must come from groups of type M(24), already unique. Finally, Sections 34 and
36 contain the proof that a group of type F24 must have type M(24)′. Thus the
latter group exists and the former group is unique. And they are the same! The
interaction of the uniqueness and existence arguments is delicate, and Aschbacher
must take great care to avoid any suggestion of circular reasoning.

Most of the arguments are typical of p-local analysis. Additionally, the simpli-
cial methods of Aschbacher and Segev [5, Chap. 12] are used to measure simple
connectivity for the commuting graphs of several 3-transposition groups. These
results are then employed within the uniqueness arguments to construct subgroups
M(23) and M(24)′ within any group of type F24. Some cohomological results are
also presented in order to construct the central and module extensions needed.
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Part III is the shortest of the three parts and holds the fewest surprises. For each
of the Fischer groups, the normalizers of all subgroups of prime order are listed.
These are found using standard local techniques. The arguments actually treat the
full automorphism group of each Fischer group. Here M(24) is the automorphism
group of M(24)′, and M(23) is its own automorphism group, but M(22) has index
2 in its automorphism group.

The classification of finite simple groups careered through the 1970’s with a
torrent of lengthy and difficult papers, Aschbacher himself prominent among the
authors. The pace and magnitude of this exhilarating project produced, as byprod-
uct, disincentive for extended reflection, motivation, insight, detail, or exposition.
In modern jargon, the subject was more “goal-oriented” than “user-friendly”. As-
chbacher’s revised treatment of the sporadic groups, as presented (so far) in this
and his previous book [5], responds to several of the earlier omissions. Many of
the arguments are still difficult and dry, and there are places where the reasoning
is more efficient than transparent. But Aschbacher keeps his reader firmly in mind
and has taken pains to put all his cards on the table. Each part has a good in-
troduction, which provides location, motivation, and summary. With only a very
few exceptions (such as the Z∗-theorem) all the material needed to understand
Aschbacher’s book is contained there or in one of the two previous books [4], [5].
He prefers to provide needed background, even in situations where it would be
easy to refer elsewhere. Such is the case with the cohomological and simplicial
methods of Part II, reviewed in the present book and covered in detail in [5]. The
various background sections are more than standard supplements but instead are
given from Aschbacher’s unique and insightful point of view. Thus Parts II and
III contain chapters which stand on their own and are worthwhile reading even
for those without specific interest in the uniqueness, existence, and local results of
those two parts. We mention two cases as illustration. In Chapter 10 of Part II
he presents and analyzes a lattice over Z[e2πi/3] in order to explain and elucidate
the embedding of the dimension 4 unitary group over GF (9) within the dimension
6 unitary group over GF (4). This approach is very similar to the treatment that
Conway and others have given to the Leech lattice and related lattices (see [7]).
In Chapter 13 of Part III, he presents a complete parameterization of all classes of
elements of order 3 in orthogonal groups over GF (3) in an approach similar to the
classic work of Wall [19].

In summary, Aschbacher’s excellent book is required for all with specific interest
in finite simple groups, but those with a less direct connection will also find much
of value. In particular, they will find the only available collected treatment of
Fischer’s classification of 3-transposition groups, one of the most important and
historic results from the theory of finite simple groups, presented lucidly by one of
the most original minds in that area.
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