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Let P be the set of probability measures on the line. An element P ∈ P is
determined uniquely by its distribution function FP (x) = P ((−∞, x]), x ∈ R, and
by its characteristic function (Fourier transform)

ϕP (λ) =
∫
eiλxFP (dx), λ ∈ R.

The convolution P ∗Q of two probability measures has distribution function

FP∗Q(x) =
∫
FP (x− y)FQ(dy) =

∫
FQ(x − y)FP (dy);

convolution of probability measures corresponds to multiplication of their character-
istic functions. If X and Y are independent random variables, then the distribution
of their sum is given by the convolution of the distributions of X and Y .

The study of the structure of the semigroup (P , ∗) is sometimes called the arith-
metic of probability distributions. A probability distribution P is indecomposable
if it has no non-trivial factors. (It is easy to find examples – for example any dis-
tribution which assigns mass to exactly two points). At the other extreme P is
infinitely divisible (ID) if, for each n ≥ 1, there exists Qn ∈ P such that P is the
n-fold convolution of Qn. So P is ID if and only if for every n ≥ 1 there exists
a characteristic function ϕn such that ϕP (t) = ϕn(t)n. While the theory of inde-
composable distributions has made few connections with other areas of probability,
that of ID distributions has been extremely fruitful.

Specific examples (such as the Gaussian, Cauchy and Poisson) have been known
for a long time, but the systematic study of ID distributions began in the 1920s
and 1930s, with the work of Lévy and Khintchine. From almost the beginning the
connection with stochastic processes was apparent. Let P1 be an infinitely divisible
law, and let X1 be a random variable (on a suitable abstract probability space
(Ω,F ,P)) with distribution P1. Since P1 is the n-fold convolution of a law Pn, we
have (modifying the probability space if necessary) that there exist independent
random variables Yi, 1 ≤ i ≤ n, such that X1 =

∑n
i=1 Yi. Thus X1 is the value at

time 1 of a stochastic process (Xt, t ∈ {0, 1/n, 2/n, . . . , 1}), defined by

Xk/n =
k∑
i=1

Yi, 1 ≤ k ≤ n.(1)

It is easy to see that X has stationary independent increments. That is, the law of
Xt −Xs depends only on t− s, and if 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk, then

Xti −Xti−1 , 1 ≤ i ≤ k, are independent random variables.

Naturally, one wants to let n → ∞ in the above argument, to obtain a process
X with stationary independent increments and parameter set [0, 1]. This can be
done, using Kolmogorov’s extension theorem. (Some additional work is necessary to
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obtain a ‘good version’ ofX , for which the sample paths t→ Xt(ω) are measurable.)
Extending the time set to [0,∞) is easy, and we deduce that each ID distribution
corresponds to a process with stationary independent increments, or, for short (since
this is rather a mouthful), a Lévy process.

The analytic characterization of ID distributions was obtained by Lévy and
Khintchine (see [L1]); the Lévy-Khintchine formula states that if P is ID, then
ϕP (λ) = eψ(λ) where

ψ(λ) = iaλ− 1
2
σ2λ2 +

∫ ∞

−∞

(
eiλx − 1− iλxI(|x|<1)

)
π(dx), λ ∈ R.(2)

Here a and σ ≥ 0 are real, and π (the Lévy measure) is a measure on R− {0} such
that

π(R− [−1, 1]) <∞, and
∫ 1

−1

x2π(dx) <∞.

(The function xI(|x|<1) can be replaced by other bounded functions with equivalent
behaviour at 0 – another popular choice is x/(1 + x2). Changing this function
changes the constant a.)

Taking a = π = 0, σ = 1 in (2) gives a standard Gaussian distribution, while a =
σ = 0, π = pδ1 (where δ1 is the unit point mass at 1) yields the Poisson distribution
with parameter p. The corresponding stochastic processes are Brownian motion and
the Poisson process. The first, as is well known, has continuous non-differentiable
sample paths, while the Poisson process is an increasing process which makes jumps
of size 1 at independent exponential times.

If ν is a probability distribution on R−{0}, then a compound Poisson process is
obtained by replacing the jumps of size 1 by independent jumps with distribution
ν: we obtain a characteristic function with exponent

ψ(λ) =
∫ ∞

−∞

(
eiλx − 1

)
pν(dx).(3)

These examples suggest that moving from the level of random variables and char-
acteristic functions to that of stochastic processes will give an intuitive meaning to
the terms in the Lévy-Khintchine formula (2), and this is indeed the case, modulo
one difficulty. The sum of independent Lévy processes is a Lévy process, so we
can combine different ‘building blocks’ to obtain a general characteristic function
of the form (2): a represents a deterministic drift, σ2 a Gaussian process of the
form σWt where W is a standard Brownian motion, and π a jump measure. Every-
thing is clear and intuitive, except for the term iλxI(|x|<1): this arises because to
obtain a convergent sequence of compound Poisson processes with Lévy measures
pnνn → π, it may be necessary to ‘compensate the jumps’ by subtracting drifts
an =

∫
(−1,1) xpnνn(dx).

Thus there is an exact correspondence between:
(ID) Infinitely divisible laws on R,
(LK) Probability measures with characteristic function given by (2),
(LP) Lévy processes.

Two of these implications ((LK)⇒(ID) and (LP)⇒(ID)) are trivial; one could
build a graduate probability course around the other four, each of which takes
one through different territory. (ID)⇒(LP) involves the Kolmogorov extension
theorem, regularisation of paths and fundamentals of Markov process theory. The
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direct proof of (ID)⇒(LK) uses the analytic theory of characteristic functions –
see for example [F, Chapter XVII] – while (LK)⇒(LP) proceeds as outlined above.
Finally (LP)⇒(LK) starts with a Lévy process and ‘pulls off’ the jumps, which have
to be compound Poisson, until a continuous Lévy process is left, and this (using the
central limit theorem) must be Gaussian. The last two approaches are those used by
Lévy and Itô in [L1], [L2], [I]. While probabilistically intuitive, they do involve some
machinery which takes a while to develop – Poisson point processes and martingale
convergence. (Of course, the machinery is worth developing anyway....)

Two classes of Lévy processes deserve special mention. A strictly stable process
of index α ∈ (0, 2] is a process such that Xt and λ−1/αXλt are equal in distribution.
These have Lévy measure given by

π(dx) = (c+I(x>0) + c−I(x<0))x−α−1dx, α 6= 1, 2.(4)

(The literature on stable distributions contains many minor errors in the constants,
particularly in the case α = 1 – see [H].) The tail of the measure π in (4) is fat,
and this means that when α < 2, stable processes have infinite variance, due to the
possibility of very large jumps. These processes have the interesting property that
the value of the process at time t is comparable with the size of the largest jump
in [0, t].

A subordinator is a Lévy process with increasing sample paths. These arise
quite frequently in theoretical applications: for example the set of times at which
a standard Brownian motion returns to 0 is the range of a stable subordinator of
index 1/2.

The theory of Lévy processes serves as an excellent introduction to that of
Markov processes, giving much of the flavour of the subject, but without the heavy
technical preliminaries of the general theory. In addition, not only are Lévy pro-
cesses important in their own right, but they can also arise as components of more
complicated systems, such as branching processes and random trees – see for ex-
ample [B], [LL].

Lévy processes are also natural models for phenomena with discontinuities. To
mention just one example, Mandelbrot (see [M1, p. 337]) suggested that stock
prices could be modelled by stable processes with index α < 2. Certainly a model
allowing jumps (which would occur on the arrival of new information) is plausible
on a priori grounds and is to some extent confirmed by observation. (With more
large downward jumps than upward?)

However, the majority of financial models, used for example in hedging options,
use (logarithmic) Brownian motion: it may be the wrong model, but it is much
easier to calculate with. A simple example will suffice. If a, b > 0 and I is the
interval [−a, b], then a Brownian motion started at 0 can leave I in two ways (up-
ward or downward), and the probability of each is easily found. But a general Lévy
process can leave I in four ways (up or down, continuously or by jumping), and in
general these probabilities have no simple form. More complicated barrier problems
for Brownian motion reduce to solving a 2nd order PDE, while the corresponding
problem for a Lévy process requires an integro-differential equation.

Discontinuous models have one other important consequence – perfect hedging
is impossible. (The technical term is an ‘incomplete market’.) If the stable model
were correct, then portfolio insurance would be a disaster.

There is a general dearth of books on specific classes of Markov process, and this
volume, the first comprehensive treatment of Lévy processes in English, fills a gap
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which has been evident for some time. ([S] is in Japanese, though an English trans-
lation is in preparation.) The book consists of essentially two halves. The first five
chapters deal with basic theory. After two chapters on preliminaries, including a
quick and neat construction of Lévy processes from Poisson point processes, Chap-
ter II covers potential theory. Chapters III and IV discuss subordinators (increasing
Lévy processes) and their application to the local times of Markov processes.

The final four chapters discuss some more specialized topics. Chapter V looks at
the global behaviour of the local times – this includes an account of Kesten’s crite-
rion for regularity of points. Chapter VI looks at ‘fluctuation theory’, that is, the
description of the joint distribution of Xt and sups≤tXs. The formulae in Chapter
VI take on a much more tractable form if the Lévy measure is spectrally negative –
i.e. π((0,∞)) = 0. These processes are the subject of Chapter VII. Finally Chapter
VIII deals with (strictly) stable processes, their sample path properties, and the
definition and properties of stable bridges. Much of this material is due to the
author or his co-workers and has appeared in the last decade.

Overall this book provides an excellent introduction to the subject and could
be used as a textbook for an advanced graduate course. Though reasonably self-
contained, it does presuppose a degree of probabilisitic sophistication in the reader
in its use of tools such as excursion theory.
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