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Two papers of Mori in 1979 and 1982 [M1], [M2] used deformations of curves
to give magnificent new results in the classification of varieties. Kollár’s book sets
itself the task of working out these arguments and their subsequent developments at
a reasonable level of detail and technicality. The book is an irreplaceable source of
information for many recent topics in algebraic geometry. It contains in particular a
reworking of Mori’s treatment of the existence of rational curves on Fano varieties,
of Mori’s fundamental Theorem on the Cone, and an extended treatment of the
notion of rational connectedness that has developed over the last 15 years into the
modern replacement for the old question of rationality.

Some sections of this book certainly take perseverance on the part of the reader
before yielding up their delights; the first two chapters in particular are certainly
harder than anything else in the book, and the reader should skim through these
briefly and lazily (thus emulating the experts), but work seriously at some of the
exercises later in the book. After some philosophy and simple-minded introduction,
this review works backwards through the book, starting with the new ideas and
applications, and finishing with some remarks to encourage the reader through the
more technical early chapters.

The second printing of the book (1999) contains corrections to Chapter I, Theo-
rem 1.7.2; and Chapter IV, Lemma 4.15.2; and patches up a few spelling mistakes.

1. Two different ways of studying varieties

Algebraic geometry in higher dimensions is never really simple or intuitive. Philo-
sophically, most work in the subject can be viewed as trying to by-pass the higher
dimensions of a variety V in one way or another. Let me discuss two approaches,
the old and the new:
(A) Cut V by hypersurfaces (that is, set function = constant), or choose a suitably

large supply of rational functions to embed V into a bigger ambient space Pn,
thus providing many such sections.

(B) Study V by mapping curves to it, preferably embedding rational curves.
Since divisors and curves are subvarieties of codimension 1 and of dimension 1, you
can think of these as “dual” approaches.

(A) is the theory of divisors and linear systems, traditional from the late 19th
century. A divisor is a codimension 1 subvariety, viewed as a potential locus of
zeros or poles of a rational function or as a hyperplane section. Most of algebraic
geometry up to the time of Mori was dominated by this approach: the Riemann–
Roch theorem, the Kodaira vanishing and embedding theorems, classification of
varieties by the size of the pluricanonical linear systems |nK| and so on. For
example, an extreme case of the classification of varieties is when the canonical
system KV is ample, so that the variety has an embedding by canonical divisors.
The opposite case, called “adjunction terminates”, is when there is an ample divisor
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D on V such that D+KV is not even effective. In this case, in the classical theory,
one expects to be able to cover V by rational curves; however, in dimension ≥ 3
the theory of linear systems seems to offer few clues as to how to prove this kind
of thing.

(B) is the new theory initiated by Mori and the main topic of this book. It
attacks the problem of curves on varieties in a number of novel ways. Since the
methods are well adapted to dealing with varieties having many rational curves, it
is mostly useful if X is covered by rational curves, that is, uniruled (see Section 4).

2. Introduction via baby cases

A simple-minded discussion of rational curves on varieties puts the general as-
pirations of the theory into context. Suppose we want to study a nonsingular
projective variety V of dimension n; for definiteness, please bear in mind the case
n = 3. Suppose that L ⊂ V is a nonsingular rational curve (that is, L ∼= P1) and we
want to see L move in a family of curves. This question is studied in many classical
cases, often by completely elementary methods, and we can summarise the results
by saying that

in good cases, L moves in a nonsingular family of dimension

degTV ∣∣L + n− 3 = c1(V )[L] + n− 3 = −KV L+ n− 3.
(1)

Here TV ∣∣L is the restriction to L of the tangent bundle to V . Its degree is

interpreted in topology as evaluating the first Chern class c1(TV ) of the tangent
bundle TV , or in algebraic geometry as intersection number with the canonical class,
the divisor class of the highest exterior power of the cotangent bundle

∧n(T ∗V ).
Exercise 1: Prove (1) under the reasonable assumption that the family of curves
{L} is nonsingular and has tangent space H0(NV |L). [Hint: NV |L is a rank n − 1
vector bundle on L ∼= P1, and its degree comes from the restriction exact sequence

0→ TL → TV ∣∣L → NV |L → 0,

so that this follows easily from Riemann–Roch.]
Moreover, if L is not actually given, but only its class in H2(V,Z), the same kind

of studies lead (in good cases) to the conclusion that curves L exist. Exercise 2:
Prove that a hypersurface Vd ⊂ Pn+1 contains straight lines if d ≤ 2n − 1, and
that if Vd is general these form a nonsingular family of dimension given by (1).
Moreover, if d ≤ n, there is a straight line L through every point of Vd. [Hint: See
Shafarevich, Basic algebraic geometry, Chapter 1.]

Another useful case for forming intuition: a line pair (that is, a reducible curve
C isomorphic to the singular conic L1 ∪L2 ⊂ P2) often moves in a family together
with nonsingular conics. Exercise 3: A general quartic 3-fold V4 ⊂ P4 contains
intersecting lines. Use elementary coordinate geometry to prove that each line pair
moves in a 2-dimensional family of conics (but only a one-dimensional family of
line pairs). Compose and solve for yourself a more general exercise concerning a
hypersurface Vd ⊂ Pn+1 containing line pairs that move out to nonsingular conics.

The hard parts of this book provide precise techniques (deformation theory,
Hilbert and Chow schemes, etc.) to manipulate curves on varieties; see §7 later in
the review for a brief discussion. Many readers will get a lot out of the book by
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taking the precise results on trust en première lecture; the above remarks on di-
mension counting, while admittedly rushed and inadequate, provide some intuitive
background.

3. Chapter V on Fanos

Chapter V on Fano varieties is probably the easiest of the book and has the
most rewarding applications: a projective (nonsingular) variety X is Fano if its an-
ticanonical divisor −KX is ample. This class contains many of the most common
varieties in applications: hypersurfaces of low degree in Pn+1, projective homoge-
neous spaces or hypersurfaces of low degree in them, simple cases of moduli spaces,
etc. After discussing examples, V.1–4 runs through standard and more advanced
topics concerned with rational curves on Fanos, mainly due to Mori, Miyaoka and
Kollár: as you would expect from the naive dimension count of §2, a Fano X con-
tains rational curves C with degree −KXC ≤ n + 1 and is rationally connected;
these results imply that all Fano n-folds form a bounded family. Characterisations
of Pn in these terms are given, including Mori’s famous proof of the Hartshorne
conjecture: a nonsingular n-fold X with ample tangent bundle TX is isomorphic to
Pn. The crux of the proof is to find a rational curve C ⊂ X with −KXC = n+ 1
to play the role of a line in Pn.

4. Chapter IV on rational connectedness

Chapter IV introduces and discusses the condition that a variety be rationally
connected . For applications of algebraic geometry (say, to Diophantine number
theory), the preferred case is a rational variety: an n-fold X is rational if there is a
isomorphism ϕ : Pn 99K X from the complement of a hypersurface in Pn to a dense
open set of X , with both ϕ and ϕ−1 defined by rational functions (in other words,
a dense open set of X has a rational parametrisation, like the singular cubic curves
in the baby textbooks). Unfortunately, rationality seems to behave pretty badly in
dimension ≥ 3. Varieties that ought to be rational (for example, because they have
no holomorphic tensor forms or are the surjective image of a rational variety) need
not be. Despite immense and prolonged effort, no-one has been able to come up
with a convincing criterion for rationality. There are strong reasons for suspecting
that rationality and unirationality are not invariant under small deformation in
dimension ≥ 4.

Two weaker conditions seem to be more amenable to a systematic treatment:
we say that a variety X is uniruled (respectively rationally connected) if it contains
enough rational curves C so that one passes through every point of X (respectively,
one through every pair of points). The notion of rational connectedness (due to
Miyaoka, Mori, and Kollár, and independently to Campana) is a reliable alternative
to rationality and is the ultimate raison d’être of the whole book. Chapter IV is
a systematic round-up of what is known about uniruled, rationally connected and
related notions. For a variety X , we have the conjectural characterisation

κ(X) = −∞ ⇐⇒ X uniruled ⇐⇒ ∃ a covering family of
curves C with KXC < 0,

which is proved in dimension ≤ 3 and char 0 (proved a posteori , that is to say,
using the sum total of the results of Mori theory). Similar remarks apply to the
characterisation of rationally connected in terms of holomorphic tensors. Under
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mild conditions (nonsingular and char 0), a uniruled variety is covered by rational
curves of reasonably small degree, and a chain of rational curves smooths out to
an irreducible rational curves so that rationally chain connected implies rationally
connected.

The definition of maximal rationally connected (MRC) fibration is the higher
dimensional analog of the distinction between rational and ruled surfaces. An MRC
fibration is a fibre space X → Z with rationally connected fibres and dimension
of Z as small as possible. The base space is conjectured not to be uniruled, so
that the MRC fibration packs together all the freely moving rational curves of X
into its fibres. Chapter IV concludes with a treatment of rational connectedness
over an algebraically nonclosed field, aiming to discuss the generalisation of Tsen’s
theorem.

I confess that my enthusiasm for the interesting applications in Chapters IV
and V has led me into various white lies concerning technical notions in the above
discussion. The most serious of these is the pretence that the curves C under
discussion are subvarieties C ⊂ X ; in fact, as I discuss shortly, Mori’s main technical
invention is to study morphisms ϕ : C → X from a fixed curve (often C = P1, and
we fix the image ϕ(Pi) ∈ X of one or two points). A key point of Kollár’s book, in
use throughout Chapter IV, is the idea of a free family of rational curves, meaning
a morphism ϕ : P1 → X whose deformation theory is unobstructed.

5. Bending-and-breaking and Mori’s theorem on the cone

I turn back to Sections II.4–II.7 and Chapter III. For a projective variety X over
C, the homology and cohomology groups H2(X,R) and H2(X,R) are dual finite
dimensional vector spaces. H2(X,R) contains the classes [C] of algebraic curves,
and H2 the first Chern classes of line bundles (or the classes of Cartier divisors).
It is traditional in algebraic geometry to introduce cycle class groups N1X or N1X
as analogues of H2 and H2, thus achieving the same end by messing about with
different equivalence relations on algebraic cycles: we write N1X or N1X for the
vector space of algebraic 1-cycles or codimension 1 cycles (with coefficients in R) up
to numerical equivalence. The two advantages of this procedure are that it is purely
algebraic and totally inscrutable. Section II.4 discusses the various algebraic cycles
used in Mori theory and the equivalence relations and effectivity conditions on them.
The key idea is the Kleiman–Mori cone NEX ⊂ N1X , the closed convex hull of the
classes of curves [C]. The behaviour of NEX in the half-space (KXz < 0) is the
subject of Mori’s famous theorem on the cone, stated and proved in Chapter III
along the lines of Mori’s original proof, but with a number of refinements. This
material is treated in several excellent colloquial surveys (see Kollár [Ko] and Corti
and Reid [CR], Foreword), and I cut short the discussion.

Section II.5 studies bending-and-breaking: let X be a nonsingular projective va-
riety, and Γ ⊂ X a curve with KXΓ < 0. We first normalise Γ to give a nonsingular
curve C and a morphism ϕ : C → X and study the deformation theory of the mor-
phism ϕ (from the fixed curve C). The normal bundle to ϕ is the cokernel of the
differential

Nϕ = coker
{

dϕ : TC → ϕ∗TX

}
.

Its cohomology H i(Nϕ) for i = 0, 1 controls the deformation theory of ϕ: for
example, if H1(Nϕ) = 0, small deformations of ϕ are parametrised by a ball in
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H0(Nϕ). The condition KXΓ < 0 is used to give the lower bound

degNϕ ≥ −KXΓ + 2g(C)− 2.(2)

Thus if KXΓ is negative by some fixed amount, we conclude from Riemann–Roch
that χ(C,Nϕ) = h0(Nϕ)− h1(Nϕ) is positive, so that the morphism ϕ moves in a
positive dimensional family. We can work in the same way with deformations of ϕ
that fix one or two points of C, provided KXΓ is a bit more negative. For example,
if C ∼= P1 and −KXΓ > n + 1, the conclusion is that ϕ has a deformation family
over a base curve B fixing two points of C (to help rigidify the automorphisms
of P1) so that the image of C sweeps out a surface in X . If we try to extend the
family ϕB : B×C → X to the projective completion B of B, we find a rational map
ϕB : B × C 99K X that cannot possibly be a morphism near the sections B × Pi,
because by construction these contract to points. It follows that a rational curve
with −KXΓ > n+ 1 moves in a family containing reducible curves.

Mori’s treatment of the general case KXΓ < 0 is much deeper: if we were in
charp, we could replace the morphism ϕ by its composite ϕ ◦ FnC with a power
of the Frobenius endomorphism FC of C to multiply degNϕ by pn, while fixing
the genus of C; roughly, pn times C then moves in a big enough family so that a
rational curve of bounded degree breaks off. If we own rational curves of bounded
degree in char p for infinitely many different p, the standard results that Hilbert
schemes are bounded imply the existence of rational curves of bounded degree in
char 0. This argument, although amazingly subtle, is really just a justification of
the dimension count of §2.

The last two sections of Chapter III treat minimal models and the classifica-
tion of surfaces, using Mori theory to provide the modern proof of Enriques and
Castelnuovo’s characterisation of ruled and rational surfaces. For a projective non-
singular surface, the direct conclusion from KS not nef is a Mori extremal contrac-
tion S → B. To go from this to the concrete conclusion that S either contains a
−1-curve that can be contracted by Castelnuovo’s criterion or is a P1 bundle over
a curve or that S ∼= P2 requires either topological input (we derive the class of a
line from Poincaré duality) or a beautiful study of del Pezzo surfaces, which Kollár
carries out in Section III.3, following Zariski.

6. Ingenious Frobenius

Sections II.6 and V.5 are clever digressions characteristic of the Kollár style, using
char p arguments to get conclusions in char 0. Section II.6 on Kodaira vanishing is
based on ideas of Ekedahl and Shepherd-Barron: starting from a counterexample
to Kodaira vanishing, that is, an ample line bundle L on a variety X in char p with
H1(X,L−1) 6= 0, a construction involving an inseparable cover gives a covering
family of rational curves of small degree on X . This leads to a contradiction in
many cases, and this idea can be used to prove Kodaira vanishing in char 0 or
on a nonruled variety and in many other cases provides a good substitute for it.
Section V.5 contains a new proof of the irrationality of many Fano hypersurfaces, an
unexpected new twist due to Kollár: on a general Fano hypersurface in char p, the
Frobenius endomorphism provides a destabilising subsheaf of the tangent bundle,
and hence regular differential forms that would contradict separably uniruled.
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7. Hilbert schemes, etc.

Constructions of algebraic geometry, such as subvarieties Z ⊂ X of a fixed projec-
tive variety X , often depend on parameters. Grothendieck and Mumford’s Hilbert
schemes and Cayley’s Chow varieties are two complementary approaches to the
problem of making such parameter spaces into algebraic varieties. For many readers,
the best prelude to the Hilbert scheme (and the functorial basis for moduli spaces)
would possibly be a few weeks with Mumford’s lectures [Mu] or Grothendieck’s
sketch [G]. The idea of the Hilbert scheme, as treated in Section I.1 of the book,
is that Z is defined by its equations, forming a homogeneous ideal IZ , and we can
coordinatise Z by the ideal IZ , viewed as a point in a Grassmann variety of vector
subspaces of a polynomial ring; loosely speaking, a subvariety Z ⊂ X is defined by
the coefficients of finitely many polynomials. If we fix a Hilbert polynomial P de-
scribing the numerical data of the subvarieties Z, the corresponding Hilbert scheme
HilbPX is a projective scheme with a universal mapping property for parametrised
families of subvarieties.

Once HilbPX is defined and we know that it is bounded, it can be studied by
infinitesimal methods as in Section I.2. The main technical result is Grothendieck’s
description of first order deformations of Z ⊂ X and obstructions to extending
them in terms of groups ExtiX(IZ⊂X ,OZ), that in simple cases boil down to the
cohomology H0 and H1 of the normal bundle to Z ⊂ X . In particular, applying
this result successively gives lower bounds on the dimension of the components of
HilbPX , with the same flavour as the classical dimension counts. The first sections of
Chapter II apply these ideas to the study of Hom(C,X), the scheme parametrising
morphisms ϕ : C → X from a curve C. A Hom scheme is a particular case of a
Hilbert scheme, since a morphism is defined by its graph viewed as a subvariety of
the product C ×X . The aim is to establish the lower bounds mentioned in §5 on
the dimension of Hom(C,X) at a morphism ϕ required to make the bending-and-
breaking of Mori theory work. These sections are a detailed treatment of the ideas
contained in two (rather difficult) pages of Mori [M1], pp. 595–597.

By contrast, Chow varieties study subvarieties Z ⊂ X by a “jumping condition”:
we set up a big space consisting of incidence conditions that should happen to Z
in codimension 1 and coordinatise Z by its Cayley form, the hypersurface where
the accident happens. Sections I.3–I.6 set up Chow schemes precisely and study
their relations with Hilbert schemes. It seems possible to me that the applications
in Chapters III–V to higher dimensional varieties could be made independent of
this, possibly the hardest part of the book. Be that as it may, Chow schemes have
important advantages over Hilbert schemes in different contexts; the distinction is
a bit like that between Cartier and Weil divisors. There is a comparison morphism
from the Hilbert scheme to the Chow scheme (Theorem I.6.3). The idea that this
correspondence is birational in important cases is exploited at several places in the
literature on moduli spaces.

Chapter I and Section II.1–3 of Kollár’s book confront head-on in heroic style
many difficult technical issues for which no easy treatment should be expected.
As Kollár says, it seems to be pretty well established that no treatment of defor-
mation theory can be technically adequate while remaining comprehensible. Most
algebraic geometers and singularity theorists know a little bit about deformation
theory from experience of a number of examples (see, for example, [A], [R], [S]),
but this knowledge is fundamentally inadequate for many purposes. Kollár makes
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a brilliant job of bringing the most important ones out into the open. Many of us
will sleep or wave our arms more comfortably in our beds, respectively seminars,
for knowing that Kollár has written up this technical material.
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