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There has been a revolutionary change in the field of birational geometry in
the last twenty plus years. This is based on the theory of extremal rays initiated
by Mori and is central to the investigation of minimal models called the Minimal
Model Program (MMP) or Mori program. But there has been no reasonably acces-
sible textbook for this theory besides more professionally oriented surveys such as
[KMM87] and [K+92] (we use the reference list of the book). In this sense, this
book, written by two of the main players in this development, answers a demand
for a long awaited introductory textbook for the beginners in this field. The ex-
position is sufficiently elementary, self-contained and comprehensive, and requires
fewer prerequisites, so this book will become a standard reference. A caution is
that the proof of the existence theorem of 3-dimensional flips is treated only in the
easy semistable case. One has to refer to the original articles in order to study the
general case.

Let us briefly recall the main results of the minimal model program. We consider
all the algebraic varieties which are birationally equivalent to a given algebraic
variety, called birational models. The classical approach to the minimal model
problem was categorical; one looked for a minimal object among all the proper
smooth models. Our new approach is numerical; we look at the numerical property
of the canonical divisor on the models. The model is called minimal if it is projective
and the canonical divisor is nef in the sense that the intersection number with an
arbitrary curve is nonnegative. In our approach, we have to admit that the model
has some mild singularities called Q-factorial terminal singularities. So we also
need arguments from commutative algebra.

The minimal model is expected to be obtained by an inductive procedure ex-
plained as follows. We take any model X which is projective and has only Q-
factorial terminal singularities. If the canonical divisor is nef, then it is a minimal
model. If not, then the cone theorem says that there exists an extremal ray on the
cone of the numerical classes curves, called the Mori cone, in a finite dimensional
real vector space. Then the contraction theorem guarantees the existence of a sur-
jective morphism f : X → Y to another projective variety which is associated to
the extremal ray.

There are 3 cases. If the dimension of Y is smaller than that of X , then f is
called a Mori fiber space (or Fano contraction, or Fano fiber space in this book), and
the program stops here because there does not exist a minimal model in this case.
Indeed, one can prove that X is covered by a family of rational curves [MM86].
Otherwise, f is a birational morphism. If it contracts a prime divisor on X , then
it is called a divisorial contraction, and Y has again only Q-factorial terminal sin-
gularities. Moreover, the Picard number, the dimension of the real vector space,
drops by 1. In this case, we replace X by Y and continue the program. Otherwise,
f is called a small contraction (or flipping contraction in this book).
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In this last case, we need a conjecture, the existence of the flip, to continue the
program. This conjecture says that there is another small birational morphism
f ′ : X ′ → Y from a projective variety with only Q-factorial terminal singularities
such that the composite birational map f ′−1 ◦ f is not an isomorphism. We replace
X by X ′ and continue the program. We need another conjecture, the termination
of the sequence of flips, in order to obtain the final result, a Mori fiber space or a
minimal model, after a finite number of steps. These 2 conjectures are proved only
in the case where the dimension is 3.

This MMP consisting of 4 conjectures—the cone, the contraction, the flip and the
termination conjectures—was formally stated in [Rei83b] after [Mor82] and [6]. It
was first a ‘problem’ from a conservative point of view. After the first 2 conjectures
were proved, it may be called a ‘program’. But it is still not a ‘project’.

Now we explain the contents of the book by chapters.
The book can be divided into two parts. Chapters 1-3 introduce quickly the

MMP and explain the general machinery which works in all dimensions. We note
that the whole MMP is completed only in dimension 3, besides the classically known
cases of dimension 1 and 2.

The goal of the second part, Chapters 4-7, is to prove the 2 flip conjectures to
complete the MMP when the given 3-fold arises from a semistable family of surfaces.
The general case in dimension 3 is too complicated and left to the references.

Chapter 1. “Rational curves and the canonical class”. Mori’s famous bend and
break method is explained. As an application, the cone theorem is obtained for the
case of smooth varieties. Historically, this was the starting point of the theory of
extremal rays. The contraction morphisms associated to extremal rays for smooth
3-folds are also classified. It is important to note that this method is still the only
mathematical way of proof for the existence of rational curves on algebraic varieties.
The drawback is that this method applies only for smooth varieties. This chapter
follows [Mor82].

Chapter 2. “Introduction to the minimal model program”. The MMP naturally
introduces singularities on the varieties through the operations of contractions and
flips. The concept of Q-factorial terminal singularities is defined. The category of
varieties with these kinds of singularities is the smallest one on which MMP works.
The largest one is the category of varieties with Q-factorial divisorially log terminal
singularities (called weak log terminal singularities in [KMM87]; the equivalence is
proved in [Sza95]).

The proof of the Kawamata-Viehweg vanishing theorem ([Kaw82] and [Vie82]),
called Kodaira vanishing theorem II in this book, is given. This is a numerical and
Q-divisorial version of the Kodaira vanishing theorem and is a fundamental tool for
the proof of the cone and contraction theorems given in the next chapter.

Chapter 3. “Cone theorems”. The idea to describe birational morphisms be-
tween algebraic varieties by using the cones inside some finite dimensional real
vector spaces goes back to Hironaka’s unpublished thesis [Hir60]. Kleiman’s ample-
ness criterion [Kle66] with respect to this cone is a basic result from this point of
view. (Toric geometry is another important development.) On the other hand, the
geometry of varieties behave very differently according to the sign of the canonical
divisor. This is reflected by the distinction of two categories of varieties which have
quite different characteristics: varieties with negative Kodaira dimension and those
with nonnegative Kodaira dimension. The former is predicted (according to the
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MMP) to be covered by a family of rational curves, and holomorphic differential
forms play an important role in the latter.

Mori’s key observation is that the cone of curves looks also very different when it
is cut into halves by the hyperplane defined by the zero intersection locus with the
canonical divisor. Indeed, the half cone on which the canonical divisor is negative
has a special shape and is generated by the extremal rays which are locally finite. In
particular, if the canonical divisor is not nef, then there exists an extremal ray. This
cone theorem and also the contraction theorem are proved according to the idea of
the base point free theorem by using the Kawamata-Viehweg vanishing theorem in
this chapter.

The MMP is naturally extended to the log and relative versions. It is natural
to consider the MMP for log varieties that are pairs consisting of varieties and
divisors. Indeed, the Kawamata-Viehweg vanishing theorem may be regarded as a
log version of the Kodaira vanishing theorem. The relative MMP is easily obtained
as a generalization of the absolute MMP.

Chapter 4. “Surface singularities of the minimal model program”. The main
reason why the MMP was completed in dimension 3 is that the classification of
singularities was possible in low dimensions. The starting point of this classification
is the construction of the simultaneous resolution for families of rational double
points and the classification of elliptic Gorenstein singularities. They are in turn
used for the classification of canonical singularities in dimension 3, because they
have finite coverings whose hyperplane sections are either rational double points or
elliptic Gorenstein singularities according to Reid.

Chapter 5. “Singularities of the minimal model program”. In general, it is proved
that log terminal singularities are rational singularities. In the case of dimension
3, a very detailed study on singularities was possible due to the results proved
in the previous chapter. The terminal singularities in dimension 3 are completely
classified by Mori and Reid.

Chapter 6. “Three-dimensional flops”. A flop is a pair of small birational mor-
phisms which is similar to a flip. The difference is that a flop is crepant in the sense
that the canonical divisor is relatively numerically trivial so that the level of the
canonical divisor does not change after the transformation. Flops of three dimen-
sional varieties having canonical singularities are constructed as an important step
toward the existence theorem of flips for 3-folds. Flops for varieties with terminal
singularities are constructed in [Rei83b] by using the simultaneous resolution for
families of rational double points. They are generalized for varieties with canonical
singularities in [Kaw88] by the so-called crepant descent.

The key observation in [Kaw88] is that the existence problem of the flips may
be reduced to the existence theorem of the flops by using a double covering trick.
Indeed, a flipping contraction of a 3-fold with terminal singularities has a double
covering which is a flopping contraction of a 3-fold with canonical singularities,
if the so-called general bi-elephant conjecture [Kaw88], which asserts the existence
of a good member in the anti-bicanonical linear system, holds. This conjecture is
proved in the semistable case in [Kaw88] and is completely proved in [Mor88], hence
the existence theorem of the flips for 3-folds. This conjecture is a weaker form of
Reid’s general elephant conjecture on the existence of a good anti-canonical divisor.
This circle of ideas was generalized in [Sho92] as the theory of complements.

The termination theorem of the flips for 3-folds was proved by [Sho85] using the
numerical invariant of terminal singularities called the difficulty.
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Chapter 7. “Semi-stable minimal models”. The proof of the existence theorem of
the minimal models is completed for the case of semistable degeneration of surfaces.
The proof presented in this book is according to Corti’s version which uses the ideas
of [Sho92]. This result is proved in a much easier way compared to the general
existence theorem for 3-folds, but already has important applications such as the
compactification theorem of the moduli space of surfaces of general type ([KSB88]
and [2]).

There are some preceeding proofs of the theorem in the semistable case. The
proofs were first announced by Tsunoda and Mori, and the first published proof
appeared in [Kaw88] by proving the general bi-elephant conjecture. There is also
a proof in [Kaw94] which holds also in positive characteristics except 2 and 3, and
Corti’s version after [Sho92].

At the end of this chapter, there are remarks on further development of the
MMP. Besides the existence conjecture of the minimal models (any algebraic vari-
ety is birational to a minimal model or a Mori fiber space), the abundance conjecture
is the most important step toward the birational classification of algebraic varieties.
This conjecture implies that any minimal model has the expected fiber space struc-
ture derived from the pluricanonical linear systems. This is a statement which
retrieves the geometric property, the semi-ampleness, of the canonical divisor from
its numerical property, the nefness.

This conjecture is also completely proved only in dimension 3 in [11], [13] and
[14]. It is proved in [9] that, if the numerical Kodaira dimension of a minimal model
X , denoted by ν(X), is equal to the Kodaira dimension κ(X), then the canonical
divisor is semi-ample. This condition, the goodness in [9], is called the abundance
of the canonical divisor in [KMM87] because it asserts the existence of sufficiently
many sections for the multiples of the canonical divisor. Thus the semi-ampleness
conjecture is now called the abundance conjecture.

As was already seen in [KMM87], it is natural to extend the MMP to the log
MMP, that is the generalization of the MMP to the log varieties, which are defined
to be the pairs of varieties and divisors. In the case of dimension 3, the log MMP is
completely proved; the existence of the log flip is proved in [Sho92] (see also [16] for
easier exposition) and the termination in [Kaw92b]. As an alternative proof of the
log flip theorem, [K+92] reduced it to the usual flip theorem [Mor88] by using an
argument in [Kaw92b]. Both in [Mor88] and [Sho92], the proof of the existence of
the flip relies on some kind of detailed classification, though the proof in [Sho92] is
more inductive in nature. So it is complicated and difficult. It is desirable to have
a simpler proof of the flip theorem which does not depend on the classification but
only on some kind of induction.

The log abundance theorem for 3-folds is proved in [KMM94a].
The investigation of log surfaces, pairs of surfaces and divisors, was another

source of the numerical geometry and the MMP [7], [17]. The importance of the
numerical property of Q-divisors was realized during the course of the classification
of log surfaces. Indeed, the log minimal models in dimension 2 were characterized
by the nefness of the log canonical divisors, and the log terminal singularities for
surfaces appeared first in this context. This research area provided a good test
ground for the new machinery such as the vanishing theorem for Q-divisors.

As explained in the first half of the book, there are two different methods in
order to prove the cone theorem. The first one, explained in Chapter 1, uses the
deformation theory of morphisms in positive characteristic. This ingenious method
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of Mori works in arbitrary characteristic. It is based on the spectacular use of the
fundamental theory of schemes such as the Hilbert scheme and modulo p reduction
of a scheme which is of finite type over Spec Z. This idea was further developed,
and one obtained the rational connectedness of Fano varieties ([4] and [12], also
[Kol96]).

The second one, explained in Chapters 2-3, is the cohomological method. This
alternative method shows another power of algebraic geometry. This is an appli-
cation of the Kodaira-Kawamata-Viehweg vanishing theorem, which is true only in
characteristic 0. The advantage is that it is applicable for singular varieties and
well suited for the log generalization, because it is originally log.

This base point free technique first appeared in [Kaw84b] in order to prove the
finite generatedness of the canonical ring for minimal 3-folds. Using this idea,
[Ben83] completed the result by proving some non-vanishing. In [8] the contraction
theorem for a general 3-fold and the cone theorem in the case of the non-negative
Kodaira dimension were proved. [Rei83c] proved the cone theorem for general
3-folds. [Sho85] proved a general non-vanishing theorem, hence the contraction
theorem, using precisely the base point free technique together with the concen-
tration method which creates singularities artificially. Finally [Kaw84a] proved the
cone theorem in arbitrary dimension, and [Kol84] proved the discreteness of the
extremal rays.

One of the origins of the MMP was the finite generatedness conjecture of the
canonical ring. The approach of the MMP is inductive and decomposes the problem
into elementary steps of the MMP algorithm. On the other hand, the conjectural
Zariski decomposition achieves the result in one step [10]. One notes that the exis-
tence conjecture of the flip can be viewed as a special case of the finite generatedness
conjecture.

Another possible way to prove the existence of the flip is to use the theory of
the derived categories [3].

There are recent developments of the birational geometry which are outside the
MMP ideology. The pluricanonical forms on algebraic varieties are basic objects
for their classification. So the invariance of plurigenera of algebraic varieties under
smooth deformations is one of the fundamental questions in birational geometry.
[15] reduced this question to the existence and the abundance conjectures of mini-
mal models. But [Siu98] proved this statement for arbitrary dimensional algebraic
varieties of general type directly without using the MMP. The vanishing theorem
was again one of the key ingredients of the proof.

It was a long-standing problem to factorize a given birational map between
smooth proper algebraic varieties into blow-ups and blow-downs with smooth cen-
ters. After the MMP was established, this problem was replaced by a new one that
the birational map should be factorized into divisorial contractions, flips and their
inverses. But recent developments ([18], [1] and [19]) revived the old form of the
factorization. The key word is torification which also appeared in [AK97].

A Japanese edition was simultaneously published: Souyuuri Kikagaku, by János
Kollár and Shigefumi Mori, with the collaboration of C. H. Clemens and A. Corti,
Iwanami Shoten, Tokyo, 1998, ix + 328pp., ISBN 4-00-010653-8. The Japanese
edition is more friendly to readers, with slightly more detailed explanations such as
the citation to [Har77]. Some of the typos in the English edition are corrected in
the Japanese edition.
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Progress in Math. 39 (1983), Birkhäuser Boston, 499–544. MR 86c:14030
[18] J. W lodarczyk. Birational cobordisms and factorization of birational maps. J.

Algebraic Geom. 9 (2000), 425–449. CMP 2000:11
[19] J. W lodarczyk. Toroidal varieties and the weak Factorization Theorem.

math.AG/9904076.

Yujiro Kawamata

University of Tokyo

E-mail address: kawamata@ms.u-tokyo.ac.jp

http://www.ams.org/mathscinet-getitem?mr=95k:14048
http://www.ams.org/mathscinet-getitem?mr=93k:14050
http://www.ams.org/mathscinet-getitem?mr=81h:14013
http://www.ams.org/mathscinet-getitem?mr=81c:14021
http://www.ams.org/mathscinet-getitem?mr=86c:14013a
http://www.ams.org/mathscinet-getitem?mr=87h:14005
http://www.ams.org/mathscinet-getitem?mr=89b:14052
http://www.ams.org/mathscinet-getitem?mr=93f:14012
http://www.ams.org/mathscinet-getitem?mr=94g:14021
http://www.ams.org/mathscinet-getitem?mr=89g:14028
http://www.ams.org/mathscinet-getitem?mr=89m:14023
http://www.ams.org/mathscinet-getitem?mr=87g:14034
http://www.ams.org/mathscinet-getitem?mr=86c:14030

	Additional References

