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The book is an elementary introduction to the theory of schemes. A scheme is
a geometric object generalizing the notion of an algebraic variety. It is defined by
gluing together the spectra of commutative rings.

1. Schemes: A history

The notion of spectrum of a commutative ring has an old and complicated his-
tory, as often happens with fundamental notions in mathematics. It is based on
an idea familiar to all mathematicians: evaluating a function f at a point x is the
same as evaluating x at the function f . More precisely, if FX is the F -algebra of
functions on a set X with values in a field F , any element x ∈ X defines a homo-
morphism FX → F by assigning to a function f its value at x. The kernel of this
homomorphism is a maximal ideal m in FX , suggesting that one can recover X as
the set of maximal ideals in FX . For example, this is true when F = F2 is the field
of two elements. The subsets of X form a Boolean lattice L and the commutative
ring FX2 is the commutative ring A(L) associated to this lattice (with the product
defined by a ·b = inf(a, b) and the sum defined by a+b = sup(inf(a, Cb), inf(b, Ca)).
A fundamental theorem of Marshall Stone [St1] says that any Boolean lattice L is
isomorphic to the lattice of subsets of A(L) assigning to each element a of the lattice
the subset of maximal ideals containing a. An example of a Boolean lattice is the
ordered set of orthogonal projectors in a Hilbert space, and the Spectral Theorem
of Hilbert establishes a bijection between this Boolean lattice and the lattice of
measurable subsets of R. To show that any Boolean lattice is isomorphic to the
lattice of subsets of a topological space which are open and closed at the same time,
Stone introduced a topology in the set of maximal ideals of A(L). A closed set in
this topology is the set of maximal ideals containing a given ideal of A(L) [St2].

In another direction, in 1941 Israel Gelfand [Gel] showed that any normed com-
mutative algebra A over C admits a homomorphism to the ring of continuous func-
tions on the set of its maximal ideals equipped with a certain structure of compact
Hausdorff space. The kernel of this homomorphism is the radical of A, the intersec-
tion of all maximal ideals of A. The image of an element a ∈ A is a function whose
value at a maximal ideal m is a unique complex number λ such that a−λ ∈ m, and,
in particular, is not invertible. The set of possible values of a is called the spectrum
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of a. An example of a normed algebra is the set of operators on a Hilbert space
which commute with a given bounded self-adjoint operator T . The set of maximal
ideals corresponds to the spectrum of the operator T .

In 1945 Nathan Jacobson observed that the topology defined by Stone can be
used to define a topology on the set of primitive two-sided ideals in an arbitrary
ring [Jac]. A primitive ideal in a commutative ring is a maximal ideal. About the
same time, Oscar Zariski introduced a topology on the set of valuations of a field
of algebraic functions [Zar]. When restricted to the set of valuations defined by
maximal ideals in the coordinate ring of an affine model of the field, it coincides
with the topology defined by Jacobson. The Zariski topology is almost never Haus-
dorff, but quasi-compact. In spite of this fact, Andrè Weil [We2] and Jean-Pierre
Serre [Ser] were able to show that many constructions of algebraic topology can
be applied to algebraic varieties defined over an arbitrary field equipped with the
Zariski topology.

When A is a finitely generated commutative algebra over an algebraically closed
field F , a choice of its generators t1, . . . , tn defines a surjective homomorphism
of the polynomial algebra F [T ] = F [T1, . . . , Tn] to A whose kernel I is an ideal of
polynomials defining an affine algebraic set X in Fn. A point x = (x1, . . . , xn) ∈ X ;
i.e. a solution of the equations P (T1, . . . , Tn) = 0, P ∈ I, defines a surjective
homomorphism of A → F by assigning to each generator ti the coordinate xi.
Its kernel is a maximal ideal mx. The Nullstellensatz of Hilbert implies that this
establishes a bijective correspondence between points of X and the set Specm(A)
of maximal ideals of A. The Jacobson-Zariski topology on Specm(A) defines a
topology on X which is called the Zariski topology. The pre-image of an element
a ∈ A in F [T ] can be considered as a polynomial (= regular) function on X . It
is equal to zero if and only if a belongs to the radical of A. A more intrinsic way
to view a ∈ A as a function on Specm(A) is to consider a(x) as the residue class
of a modulo a maximal ideal m representing x ∈ Specm(A). A homomorphism
f : A → B of finitely generated F -algebras defines, by taking the inverse image, a
map Specm(B)→ Specm(A). This corresponds to a regular map of algebraic sets.
Thus we see that there is a natural bijective correspondence between isomorphism
classes of affine algebraic sets and reduced (i.e. with zero radical) finitely generated
F -algebras.

As was observed by Serre [Ser], the notion of localization of a commutative ring
introduces a natural sheaf OX of rings on X = Specm(A). Its stalk at a maximal
ideal m is the localization of A with respect to the multiplicative set A \ m. A
section of OX over an open subset U can be interpreted as an element P/Q of the
total ring of fractions of A such that Q does not vanish at any point x ∈ U .

The pair (X,OX) gives an example of a ringed topological space. This notion
was introduced earlier by Henri Cartan to define a geometric space by gluing local
models of ringed spaces (like, for example, open subsets of Cn equipped with the
sheaf of holomorphic functions). Serre showed that a similar construction can be
applied to the abstract algebraic varieties introduced by Weil [We1].

The ideas of categories and functors which became popular around 1955 showed
the inadequacy of the notion of the maximal spectrum Specm(A) of a commutative
ring A. The correspondence A → Specm(A) is not a functor from the category of
commutative rings to the category of topological spaces since a homomorphism of
rings does not define in general a natural map of the maximal spectra. However, if
one enlarges the space Specm(A) by considering the set Spec(A) of all prime ideals
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instead of just maximal ideals and by defining a topology on Spec(A) in a similar
fashion, the functoriality becomes obvious. A homomorphism f : A → B of rings
defines a continuous map af : Spec(B) → Spec(A), p → f−1(p). Although the
pre-image of a maximal ideal is not always maximal, the pre-image of a prime ideal
is always prime. When A is a finitely generated algebra over a field, a prime ideal
corresponds to an irreducible closed subset of the corresponding affine algebraic
variety X .

Around 1957 Pierre Cartier observed that a ringed space locally isomorphic to
a ringed space of the form Spec(A) should be considered as a generalization of
an algebraic variety. Following this suggestion Alexandre Grothendieck began to
develop the foundations of algebraic geometry based on this generalized notion of
algebraic variety called a scheme. The original plan of this grand and ambitious
project under the modest title “Eléments de Géometrie Algébrique” (EGA) in-
cluded 13 chapters in which a large part of algebraic geometry was supposed to
be rewritten in the language of schemes. Grothendieck had also foreseen that the
new ideas would be instrumental for the proof of the Weil conjectures for the zeta
function of an algebraic variety over a finite field; he planned to devote the last
chapter of his work to this proof. Although only four chapters filling around 2000
pages had been completed with the cooperation of Jean Dieudonné, Grothendieck’s
Seminaires de Géometrie Algébrique (SGA) at IHES in the sixties and early seven-
ties give a glimpse of the material that was supposed to appear in the subsequent
chapters. The influence which EGA made upon the development of algebraic ge-
ometry, commutative algebra and number theory is hard to overestimate. Even
Grothendieck’s foresight about the proof of the Weil conjectures turned out to be
right, although it was not he but his former student Pierre Deligne who finished
the proof. Needless to say it would be impossible without the techniques developed
by Grothendieck. Although the impact of Grothendieck’s opus on the development
of algebraic geometry is tremendous, it is even more spectacular with respect to
number theory. It is hard to believe that the proof of the Mordell conjecture by
Gerd Faltings and the solution of the Fermat problem by Andrew Wiles would be
possible if EGA did not exist.

2. Schemes versus algebraic varieties

One of the first immediate achievements of Grothendieck was making commu-
tative algebra a part of algebraic geometry, establishing its goal as the study of
the local structure of schemes. The immediate result was that many global con-
structions of algebraic geometry (e.g. resolution of singularities, or cohomology
theory) became powerful tools in the study of commutative rings. The theory of
schemes also unites Arithmetic and Geometry, as was contemplated by Leopold
Kronecker in the last century. The spectrum of the ring of integers in an alge-
braic number field and a compact Riemann surface are just different examples of a
regular scheme of dimension 1. A higher-dimensional generalization of the former
scheme is an arithmetic scheme, a scheme obtained by gluing together the spectra
of finitely generated algebras over the ring of integers. The study of such schemes
now belongs to the subject of Arithmetic Geometry. The solution of the Fermat
Problem is one of its most striking recent achievements.

The theory of schemes did not just add new objects of study in algebraic geom-
etry. It brought some new insights and new techniques which were instrumental
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in solving many important problems in classical geometry. For example, admitting
nilpotent elements in the structure sheafOX of a scheme X gives a very natural geo-
metric interpretation of multiplicities of intersections of algebraic varieties, degen-
erations of algebraic varieties to “multiple varieties”, infinitesimal neighborhoods
of subvarieties and so on. Many pathologies in the theory of moduli of algebraic
varieties (where the number of moduli computed from the local deformation theory
turned out to be different from the actual number of parameters) were adequately
explained by David Mumford in the late sixties by using the theory of schemes.
The theory of schemes made it possible to approach some classical constructions in
algebraic geometry (e.g. the Picard varieties or the Chow varieties) from a unified
and simple point of view based on representability of functors in the category of
schemes. It paved the way to the introduction of algebraic spaces by Michael Artin
[Art] and Boris Moishezon [Moi] which generalize schemes. An algebraic space is
also a special kind of stack. This new generalization of a scheme introduced by
Deligne and Mumford in [DM] is very fashionable these days in connection with
some new developments in enumerative geometry influenced by ideas coming from
quantum field theory.

The construction of blowing up an arbitrary ideal in a commutative ring, or an
arbitrary closed subscheme in a scheme, was made possible and easily dealt with
only in the framework of schemes. This was used in an essential way by Heisuke
Hironaka in his fundamental work on resolution of singularities of algebraic varieties
over a field of characteristic zero [Hir].

The notion of extension of scalars for commutative algebras over an arbitrary
ring, after globalizing, leads one to consider any morphism of schemes f : X → S
as a family of schemes parameterized by S. For any point s ∈ S, the fibre Xs of f
over s is a scheme defined over the residue field of the point s. The study of local
and global properties of morphisms of schemes occupies the largest part of EGA.
It has completely revolutionized the study of families of algebraic varieties based
on the archaic techniques of valuation theory.

3. The book

According to the authors, the goal of the book is “to share the secret geometry of
schemes with the average mathematician and many a beginner in algebraic geome-
try.” The geometric nature of schemes is self-evident if one remembers the previous
purely algebraic approach to the foundations of algebraic geometry developed in
the works of van der Waerden, Chow, Weil, and Zariski. However, very often,
especially in the case of a future number theorist, one’s first acquaintance with al-
gebraic geometry begins with studying Hartshorne’s Algebraic Geometry [Har], an
excellent digest of EGA. Its first chapter, devoted to classical algebraic geometry,
occupies only 54 pages, which is hardly enough to build a good geometric intuition
to fully appreciate the geometric nature of schemes. A student with a year’s ex-
perience in algebraic geometry (e.g. from studying Shafarevich’s book [Sha]) will
have less trouble understanding geometry after reading Hartshorne’s book. Also,
Hartshorne’s book was written with the goal of replacing EGA as a reference book
in the theory of schemes. It contains a lot of serious technical material, like coho-
mology theory with its applications as well as the basic properties of morphisms of
schemes. Constraints of space in Hartshorne’s book left a gap which the present
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book attempts to fill. It provides an intuition of schemes, leaving till later the
technical core of the theory.

In many aspects the book calls to mind the Red book of varieties and schemes
by D. Mumford [Mu2]. I cite from the introduction to the latter book: “These
notes attempted to show something that was controversial at that time [mid 60’s];
that schemes really were the most natural language for algebraic geometry and
that you did not need to sacrifice geometric intuition when you spoke ‘scheme’. I
think this thesis is now [1988] widely accepted within the community of algebraic
geometry....” It seems that the goal of the book is to make the thesis accepted
beyond this community. Mumford also suggested another approach to learning the
geometry of schemes. One learns the language of schemes while studying at the
same time a useful concrete geometric theory written in this language (for example,
the theory of curves on algebraic surfaces [Mu1]). This approach served well many
geometers of my generation, and probably the authors of the book. Taking into
account that the tremendous progress in algebraic geometry in the past two decades
makes the study of algebraic geometry even more time consuming, I believe that
this approach still has some merit.

The book under review makes the life of a beginner much easier and more pleas-
ant. There is no need to wander in the vast land of algebraic geometry before one
gets to appreciate the geometric nature of schemes. Instead one is led to it straight
along a pleasant and easy road paved by some of the best experts in the field. It
is a masterpiece in choosing interesting topics and instructive examples which are
presented in a very clear way. If one can afford the time to read it, this will be a
source of tremendous joy and will constitute good preparation for a more serious
study of the theory of schemes based on Hartshorne’s book or EGA.

It is hard to place this book among the enormous number of already existing
modern books in algebraic geometry. This is not a surprise since it is an original and
unusual book. It is not a new textbook in algebraic geometry, of which there are
already too many. It would be hard to use the book to teach a course on schemes
because it does not go very deeply into the theory. For example, it does not contain
cohomology theory. It also skips the proofs of some of the fundamental properties
of schemes, such as, for example, the valuative criterion of properness or criteria
of ampleness of invertible sheaves. However, it will certainly help a student to
digest [Har] (which helps one to digest EGA). It will help an instructor to make the
course more lively and motivating by borrowing some of the illuminating examples
from the book. In this respect it is comparable to the book on classical algebraic
geometry of the second author [Harr], which is also great fun to read but difficult
to teach from. I would not recommend this book to a non-specialist who wants
to get acquainted with some techniques of schemes without going into the details.
Two articles of V. Danilov [Da1], [Da2] in Encyclopaedia of Mathematical Sciences
will serve these needs much better.

Finally a few words about the contents of the book. First of all it represents
a major revision and extension of the authors’ earlier book [EH]. New chapters
were added and the old ones have been improved and extended. This led to the
increase in the size of the book by a factor of almost two. Two new chapters are
Chapter 4, “Classical constructions”, and Chapter 5, “Local constructions”. The
first one deals with many examples illustrating the role of nilpotents in the classical
geometry of algebraic varieties. Although some of the examples are of the sort which
can be easily left to the reader or included as exercises in any standard course on
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schemes, others are rather serious and very informative (for example, the examples
concerning the limit behavior of the Fano scheme of lines on a hypersurface, blow-
ups of nonreduced subschemes or forms). The second one treats the degenerations
of dual plane curves and discriminants from the point of view of the definition of
the image of a morphism of schemes. Some of this material could be useful even
for an expert. Chapter 1, “Basic definitions”, and Chapter 2, “Examples”, are
left almost without change. Chapter 3, “Projective schemes”, now contains a lot
of new material (Grassmannians, Bézout’s Theorem, tangent cones). Chapter 6,
“Schemes and functors”, has not been changed much. Here one can find one of the
most important applications of the theory of schemes, which is a construction of
different parameter spaces in algebraic geometry. Although the goals of the book
do not permit one to go into depth in this theory, one gets its flavor very easily.
Every chapter of the book contains an extensive set of problems; their number has
increased from the earlier book by more than double. Some of these contain new
examples; others fill in technical details.

In summary, I find the book useful for a future researcher in algebraic geometry,
number theory or commutative algebra. I hope one will share my enjoyment in
reading it.
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ture Notes in Math. 288, Springer-Verlag, Heidelberg, 1972. MR 50:7134

[SGA7II] Deligne P. , Katz N., Groupes de Monodromie en Géometrie Algébrique, Part II, Lecture
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