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The theory of profinite groups is flourishing! This is the first immediate obser-
vation from looking at the four books on the subject which have come out in the
last two years. The subject, which only two decades ago was somewhat remote,
has made its way to mainstream mathematics in several different ways.

What is a profinite group? A profinite group G is a topological group which
is Hausdorff, compact and totally disconnected. A more meaningful equivalent
definition is that G is the inverse limit of finite groups. As such, much of the theory
of finite groups can be carried over to profinite groups.

The origin of the subject lies in Galois theory: If E is an infinite algebraic Galois
extension of a field F and G = Gal(E/F ) is the group of the automorphisms of
E fixing F , then the classical Galois theory does not hold anymore. Intermediate
fields between F and E give rise to subgroups of G, but the fixed point sets of
different subgroups of G can give the same intermediate subfield.

Now G has a natural topology called the Krull topology obtained by declaring,
for every finite subextension F ⊆ L ⊆ E, the subgroup G(E/L) to be open in G.
The classical Galois theorem now holds in the following form: There is a one to one
correspondence between intermediate field extensions and closed subgroups of G.
So infinite Galois theory leads one naturally to profinite groups. Many questions of
arithmetic interest are naturally formulated in this way. For example, the inverse
Galois problem asking whether every finite group is a Galois group of some (finite)
Galois extension of Q is actually the question whether every finite group is a quo-
tient of the profinite group G(Q̄/Q) when Q̄ is the field of all algebraic numbers.
Indeed, the profinite group G(Q̄/Q) has been the focus of a lot of research. More
generally, “Field Arithmetic” (see [FJ]) is the area which studies these infinite field
extensions, their Galois theory and model theoretic aspects.

Profinite groups have come up also from a different direction. The notion of
a Lie group is fundamental in many areas of mathematics: This is a topological
group which is at the same time an analytic manifold, i.e., locally homeomorphic
to a ball in Rn, so that the group operations are analytic functions in the local
coordinates. One can replace R by any locally compact field over which “analytic
functions” can be defined - in particular by Qp, the field of p-adic numbers - to get
a “p-adic Lie group”. It turns out that such a p-adic Lie group always has an open
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pro-p subgroup, where a pro-p group is a profinite group which is the inverse limit
of finite p-groups.

These are the “Analytic Pro-pGroups” which are the focus of interest of the book
of Dixon, du Sautoy, Mann and Segal. Such p-adic Lie groups and some products
of them, i.e. “Adelic groups”, have become important objects in representation
theory, algebraic groups, arithmetical number theory, etc. For example, if E is
an elliptic curve defined over Q, it has a structure of a group where ∞ serves as
the zero element and E(C) ' S1 × S1. Hence for every n, E[n] := {P ∈ E(C) |
nP = ∞} ' Z/nZ × Z/nZ. The Galois group G(Q̄/Q) acts on E(Q̄) and hence
on E(n), giving a representation ρn : G(Q̄/Q)→ GL2(Z/nZ). Accumulating these
representations together when n = pr and r →∞, one gets a p-adic representation
ρ̃ : G(Q̄/Q) → GL2(Zp) where Zp is the ring of p-adic integers. So ρ̃ is nothing
but a homomorphism between two profinite groups - one a Galois group and the
other a p-adic Lie group. These representations have played a crucial role in Andrew
Wiles’ proof of the Taniyama-Shimura conjecture and therefore also in Fermat’s last
theorem. Some of this is described in Nigel Boston’s survey article “p-adic Galois
Representations and pro-p Galois Groups” in New Horizons in Pro-p Groups.

But maybe the new boom in profinite groups is due mainly to the discovery that
they can act as a bridge between finite and infinite groups. To explain this, let Γ be
a discrete group. Make Γ a topological group by declaring all finite index normal
subgroups N of Γ to serve as a basis of neighborhoods of the identity of Γ. This is
called the profinite topology of Γ. For example, if Γ = Z is the infinite cyclic group,
then one can see that a subset A of Z is open in the profinite topology if for every
a ∈ A there exists 0 6= t ∈ Z such that a+ tZ ⊆ A; i.e., the arithmetic progressions
serve as a basis for the open sets of Z.

Before continuing to non-commutative groups, let us mention the amusing use
of this topology, due to Furstenberg [F] (then an undergraduate), to prove that
there are infinitely many primes. Indeed, every arithmetic progression is open but
also closed, as its complement is a union of arithmetic progressions. Now, if there
are only finitely many primes p, then

⋃
p
pZ is closed and hence its complement

Z\
⋃
p
pZ = {±1} is open. But the finite set {±1} is not open.

Going back to the general case of Γ, we note that usually Γ is not complete
with respect to the profinite completion, but one can complete it to get Γ̂, which is
actually isomorphic to lim

←
Γ/N , the inverse limit over all the finite quotients of Γ.

For example, for Γ = Z one gets Ẑ which is actually isomorphic to
∏
p

Zp (this last

statement is just a reformulation of the Chinese remainder theorem). The group
Ẑ is actually a ring. Another amusing observation is that Ẑ×, the set of invertible
elements of Ẑ (invertible with respect to the multiplication), is equal to P̄\P , where
P is the set of all primes in Z and P̄ denotes its closure in Ẑ. This last observation
is equivalent to the Dirichlet Theorem on the existence of infinitely many primes in
arithmetic progression. (Can this lead to a new proof of the Dirichlet Theorem?)

One should note, however, that in general Γ does not inject into its profinite
completion. This happens if and only if Γ is residually-finite; i.e., the intersection
of its finite index subgroups is trivial. But, if Γ injects into Γ̂, the latter can be
a powerful tool to study Γ. On the face of it, Γ̂ is a more complicated group
(uncountable even if Γ is countable), but many of the techniques of finite group
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theory can be applied to Γ̂, and then later to Γ. Here is an example to illustrate it: A
group has rank r if every finitely generated subgroup of it is generated by (at most) r
elements. It has been a long-standing open problem whether every finitely generated
group Γ of finite rank is virtually solvable, i.e., contains a finite index solvable
subgroup. This was shown not to be the case in general by Ol’shanskii and Rips,
who constructed the “Tarski monster”, an infinite simple group Γ which is generated
by two elements and with all its proper subgroups cyclic (in particular Γ has rank 2).
In fact, this Tarski monster is a counter-example to various questions of this sort
which ask whether some “finiteness assumptions” imply finiteness or solvability
of the group Γ. In [LM] it was shown that the answer is yes if Γ is in addition
residually finite. So a finitely generated, residually finite group of finite rank is
virtually solvable. The proof runs like this: Replace Γ by Γ̂; then using a theorem
of Tate on finite groups and the Feit-Thompson theorem on the solvability of finite
groups of odd order (both results carried by standard inverse limit arguments from
finite to profinite groups), it is deduced that (after going to a finite index subgroup)
all finite quotients of Γ̂ are solvable. Further arguments enable one to replace Γ̂ by
an appropriate pro-p group G in which Γ sits as a dense subgroup. The fact that Γ
is of finite rank implies that G is a pro-p group of finite rank. Now, the theory of
analytic pro-p groups implies that G is a p-adic Lie group and can be embedded in
GLn(Qp) for some n. This implies that Γ (being a subgroup of G and Qp a subfield
of C when one forgets the topology) is linear over C. For such a linear group, Tits’
well known alternative asserts that either Γ contains a non-abelian free group or it
is virtually solvable. As Γ has finite rank, it must be virtually solvable.

Two points should be emphasized in the above description of the proof: we have
used results on finite groups (and in particular a theorem on finite groups of odd
order) when our group under study, Γ, is an infinite group and possibly without
any element of finite order. This illustrates how profinite groups can serve as a
bridge to use finite group theory (and sometimes also the classification of finite
simple groups and its applications) in the world of infinite groups. Another crucial
ingredient in the proof is the use of p-adic analytic pro-p groups as a machinery
to “linearize” groups. Once the group is linear (i.e., a matrix group over a field) a
wealth of methods from algebraic and arithmetic group theory are available.

As frequently happens, the theory of profinite groups, which has first been stud-
ied for its applications to other fields, turns out also to have a beauty all its own.
The four books under review describe much of this theory and its applications in
various directions.

The books of Wilson and of Ribes-Zalesskii carry out a systematic study of
the general theory of profinite groups. Both start with generalities on profinite
groups, for example, the definition of the order of a profinite group as a supernatural
number. This definition enables one to talk about p-Sylow subgroups and Sylow
theory (in spite of the fact that in general G has no elements of order p). Much
of the theory of finite groups, when interpreted in the proper way, can be carried
out to profinite groups. But at the same time, the category of profinite groups has
free objects - the free profinite groups. This presents a new challenge: how the
combinatorial group theory - for example, the part of it which describes subgroups
of discrete free groups (or free products, etc.) - can be extended to the category of
profinite groups where combinatorial methods are not available anymore. Indeed,
some of the results hold and some do not: for example a closed subgroup H of
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a free profinite group F is not necessarily free, not even if H is normal. But a
surprising result says that if H is normal, then any proper finite index subgroup of
H is free. So the area of “combinatorial” group theory of profinite groups is still
far from being understood.

Both books also treat in detail the cohomology theory of profinite groups. This
subject has also been treated in the two previously written monographs on profinite
groups: the classical Cohomologie Galoisienne by J.-P. Serre from 1964 [S] and
Profinite Groups and Galois Cohomology by L. Ribes from 1970 [R]. The old books
were written with number theoretic applications in mind and contain a wealth
of such applications. The current books focus on the profinite groups and their
applications within group theory. An important point of novelty in the current
books is that they develop the cohomological theory when the module can also be
profinite and not necessarily discrete. This was an aspect well needed which has
not been systematically covered in the literature so far, and the authors should be
thanked for taking the effort of developing and putting in print a complete theory.

Up to now we have talked about the similarities. There are also differences
which are naturally based on personal taste and the authors’ background. Ribes-
Zalesskii’s book puts an emphasis on much of the combinatorial group theory of
profinite groups; free construction such as amalgamated free product, HNN con-
struction, automorphism groups, etc. Wilson on the other hand elaborates on the
“small” profinite groups such as those of finite rank, solvable groups and finitely
presented pro-p groups. The book of Ribes-Zalesskii is of more an encyclopedic
nature with detailed theory, while Wilson’s book is based on a graduate course the
author gave and therefore is perhaps easier to digest for newcomers to the area.

The other two books under review are very different. Analytic Pro-p Groups by
Dixon, du Sautoy, Mann and Segal is a revised and expanded version of a book
with the same title which came out in 1991. That book was a landmark in the
development of profinite and pro-p group theory: it presented in a self-contained
and beautiful way the theory of analytic pro-p groups - the pro-p groups which have
the structure of p-adic Lie groups. The theory of p-adic analytic pro-p groups was
developed mainly by Lazard in his seminal paper [La] in 1965, where he showed,
among other things, that they have finite rank. Only since the late 80’s have these
groups become popular among group theorists as it was realized that they can
serve as a vehicle for “linearization” of discrete groups. The treatment of Dixon,
du Sautoy, Mann and Segal overturned the historical development, starting with
the study of the pro-p groups of finite rank and showing that they are exactly the
analytic pro-p groups. Along the way they present the internal beauty of this class
of groups, making them into an interesting object of study, independent of their
applications. The current version is, as said, an expanded one, adding topics such
as pro-p groups of finite class, dimension subgroups and analytic pro-p groups over
other pro-p rings (such as Fp[[t]], the formal power series over the finite field Fp;
here the theory of Lie groups of characteristic p is needed and many problems are
still open).

The last book, New Horizons in Pro-p Groups, gives a panoramic view of current
pro-p group theory. This is a collection of 12 articles by the world’s experts on the
subject who describe the various directions the theory takes these days. Some of the
articles are dedicated to the study of pro-p groups for their own sake, for example,
their classification and their cohomology. Others deal with special subclasses, e.g.,
branch pro-p groups, the Nottingham group, Golod-Shafarevich groups and more.



BOOK REVIEWS 479

Other papers deal with subgroup growth and the associated zeta functions. Two
papers deals with the connection between the abstract theory of pro-p groups and
number theory (e.g., via p-adic Galois representations mentioned above). The di-
versity and richness of these papers prove our claim at the beginning of this review:
the theory of profinite groups is indeed flourishing in quantity and quality.
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