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Quantum theory began in an enigma about the structure of matter and radiation.
This enigma pointed, in the hands of Planck and his successors, to a fundamental
discreteness at the basis of physics. Such discrete behaviour would not be paradox-
ical in a fully discrete world, but it appeared at the time (and still does appear to
many) that the world of our experience is well-approximated by a continuum. Cer-
tainly the classical phenomena of gravity, and electricity and magnetism appeared
to be described by differential equations that modelled behaviour in a continuous
world. Planck found that radiation needs to be quantized with a minimum al-
lowed energy level, and the enigma was born. Einstein discovered that this same
quantization hypothesis could explain the photoelectric effect, and atomic structure
needed a new theory to allow the electrons to have stable orbits if they had orbits
at all. One needed an explanation for the spectra of elements that would have the
atoms emitting light at only certain characteristic frequencies. Bohr’s theory of the
atom gave the right numbers but was logically inconsistent. DeBroglie stepped into
the picture and suggested that matter was accompanied by a wave and that this
wave/particle duality of matter was the source of the elusive discrete. DeBroglie’s
suggestion explained the special orbits of electrons in atoms by a restriction due to
the needed periodicity of his wave functions.

Werner Heisenberg discovered an algebraic approach to the atom where one
no longer tried to visualize the atomic orbits. He took an approach that gave
the coordinates for position and momentum the attributes of operators in a non-
commutative calculus. Concurrently, Erwin Schrédinger found a wave equation
to go along with DeBroglie’s waves. That wave equation was in accord with the
quantum behaviour of the hydrogen atom and with many other systems. In the
context of the wave equation it was natural to replace physical observables by
differential operators with special commutation relations. Soon it became clear
that Heisenberg’s matrix mechanics (of infinite matrices) and Schrédinger’s wave
mechanics were formally identical. The unification of these approaches led to a
version of quantum mechanics where the states of the quantum system are vectors
in a complex Hilbert space, and the observables are self-adjoint linear operators
on that space. In this formulation all the physics rests in the structure of the
observables.

The enigma remained, for it was still not clear how a particle could at the same
time be a wave. One can see the dilemma clearly in the Schrodinger context,
for there, without observation, the wave function evolves deterministically, but as
soon as an observation is made the wave function is projected into an eigenstate.
Observations are discontinuous interruptions of the smooth evolution of the wave
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function. And it is at the point of observation that the particulate appearance of
matter and light emerges.

Electrons boil out of a hot filament and make their way toward a phosphorescent
screen. Their journey is interrupted by a wall with two small separated slits. After
many hits on the screen an interference pattern, ostensibly due to the two slits, is
observed. This interference pattern is made up of a myriad of tiny dots, each a
record of the collision of a single electron with the screen. How do the electrons
“know” how to form the interference pattern? DeBroglie’s answer was that the
electrons really did fly in complex trajectories from the filament to the screen,
but that these trajectories were governed by a “pilot wave”, essentially the wave
function of Schrodinger’s equation. Later, David Bohm would take the DeBroglie
theme and show exactly how it could be realized in the context of that equation of
Schrodinger. But Heisenberg had made his theory in the context of a philosophy
that would deliberately ignore what could not be observed. By a modern version
of Occam’s razor Bohr and Heisenberg suggested that it was not necessary to think
of complex trajectories for the electrons, not even necessary to think of trajectories
at all. Max Born put the cap on this model of logical positivism by interpreting
the absolute square of the Schrédinger wave function as the probability of finding
an electron (or other particle) if an observation is made. The wave function in the
hands of these physicists became a wave of information, not a physical vibration,
and the character of quantum mechanics became essentially statistical in a statistics
where one no longer could point to any individuals that were tallied and counted.

Sometime later Dirac found a way to make a new version of the Schrédinger
equation that was relativistically invariant, and this led deeper into the quantum
mechanics of the electron and to the concept and experimental reality of anti-
matter. With this deepening of a quantum mechanical approach to electrons came
the need to quantize the electromagnetic field as well, to model the dual nature
of light itself as particles and waves (the particulate nature of light as photons
having been already verified by Einstein through the photoelectric effect). Field
quantization meant the replacement of the smoothly varying electromagnetic field
by a smoothly varying set of operators and commutation relations, in analogy to
the more elementary commutators of the standard quantum theory. Thus quantum
field theory was born and with it a host of physical and mathematical problems.

Almost as a concomitant to quantum field theory was Feynman’s discovery that
virtually all quantum problems could be formulated in terms of a summation over
configurations of classical states (Feynman integrals and path integrals). This ap-
proach clarified the nature of the relationship of the classical and the quantum,
but deepened the enigma. Now trajectories and classical fields were not banished,
but Nature in the guise of the models promoted by the Feynman integrals used all
possible trajectories and all possible fields. When all possibilities are integrated
with appropriate complex number valued weightings, then most cancel each other
out and the heart of what is left (the stationary phase approximation) is the famil-
iar classical physics following the familiar classical laws. Surrounding that classical
core is the halo of the quantum effects in exact analogy to the way ray optics and
diffraction effects are related in the classical phenomena of light scattering. Ap-
plied to summations over fields, the Feynman integrals led to the famous Feynman
diagrams, summaries of key contributions to the interactions that must be seen as
sums over all possible events.
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The sums themselves led to mathematical problems and physical problems. On
the mathematical side the integrals do not always have an associated measure the-
ory. A mathematician would tend to say that the integrals do not exist. A physicist
would say that the integrals are hypotheses about the possibility of a calculation
whose reality would be tested by its results. This is a pragmatic approach to
mathematics: Assume the answer has a certain form and determine what sorts of
answers can have that form. On the physical side, once it was a given that one had
to sum over all possible interactions to have the state of (say) an electron, then
that electron became surrounded by a cloud of (virtual) photons, indicators of the
way the electron interacted with its own electromagnetic field. The summations
diverged to infinity. Various “renormalization schemes” came into being to tame
these self-generated infinities of quantum electrodynamics. All quantum field the-
ories beyond a certain complexity require such renormalization, and the problem
of making mathematical sense of these matters of integration and renormalization
continues to the present day.

String theory was originally a corner of quantum field theory, born of observa-
tions related to the so-called “dual models” of Veneziano. In these models two
classes of Feynman diagrams were intimately related.

View the diagram above in two ways: with time running vertically and space
running horizontally, or with time running horizontally and space running vertically.
In the first case you see two particles exchange a photon (the dotted line). In the
second case you see two particles annihilate one another, producing a photon, and
then the photon creates a pair of particles again. These quite different scenarios
have related quantum amplitudes, and it was suggested that there should be a single
mathematical scheme that would give rise to both (types of) calculations. Extended
quantum particles were imaginable in the (more literal) strings of quarks that should
arise to protect the separation of quarks of fractional charge. Nambu, Scherk and
others in the 1970’s suggested that the underlying mathematical structure could
be seen through replacing the point (diagrammatic) models for the interacting
particles by closed circles (the string!). The Feynman diagram becomes a surface
topologically equivalent to a sphere with four holes punctured. The two forms of
Feynman diagram become two of the topological forms of the single surface.

Along with replacing the particles by one-dimensional objects, the nascent string
theory used analysis (of complex variables) related to the string surface (the world
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line of the string interaction) to relate the mathematics of the two different in-
teraction pictures. The mathematics of this beginning conformal field theory was
sufficiently compelling to keep people working at this attempt at unification. It
must be understood that the string theory did not mean a return to a naive picture
of an elementary particle as something like a classical one-dimensional loop, like
a loop of macroscopic rope. It is a quantum string. But what would a quantum
string be like? What would it be like to have a little vibrating string in the quantum
domain? The answer comes from quantum field theory. A string is an example of
a field with one dimension of space and values (the position of the string) in some
other spacetime where the spatial dimension can be regarded at first as a matter
of discussion. The motion of the string is a dynamical behaviour of this field. To
quantize the string, one looks for a way to parametrize the field with operators
and to identify the appropriate commutation relations in direct analogy with other
quantum field theories. This gives rise to the Virasoro algebra and the conformal
field theories associated with the string surface. From the mathematical point of
view conformal field theory may be defined as a study of the Virasoro algebra and
its representations and of their intertwiners. String theory is an outgrowth of quan-
tum field theory. It does not start from nothing and it does not start from simple
geometry, even though the string surface is an attractive image and a carrier of
simplification for the physics.

The need for cancellation of anomalies in the string quantization shifts the em-
bedding space to high dimensions. These extra dimensions may be real at the highly
microscopic level of space. As the popular accounts tell us, the high dimensions
of the superstring are rolled up in a microworld where vibrating strings lie in the
heart of matter and radiation. These days, strings are generalized to membranes,
and there is hope that the multiplicity of string theories will be unified in one magic
matrix membrane theory emerging from the shadows of mathematical and physical
analysis and including in its structure a full unification of quantum theory, high
energy physics and general relativity.

They say that you should not judge a book by its cover, but that is not true
for the two-volume set Quantum fields and strings: A course for mathematicians,
edited by Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David
Kazhdan, John W. Morgan, David R. Morrison and Edward Witten.

The wonderful cartoon on the cover of these volumes tells all. It consists of
four quadrants, two labelled 68 and two labelled ’98. In ’68 there are two plates
labelled “Physics” and “Mathematics” respectively. In ’68 the physicists are busily
contemplating a Feynman diagram and some highly indexed tensors on the black-
board. In ’68 the mathematicians are conceptualizing a formula for the index of an
operator in terms of the Chern character, some surfaces, some cohomology, some
fundamental groups, an aura of differential geometry and differential topology. In
"98 the cartoons are exactly reversed. The mathematicians puzzle over a Feynman
diagram, and the physicists worry about topology, homology and differential geom-
etry. What has happened that the tables have so turned? That is the story told in
these volumes.

Here the reader will find accounts of physical structures by mathematicians, ac-
counts of mathematics by physicists, and all manner of things in between. String
theory and quantum field theory have such a rich mathematical structure that it
has attracted the talents of both mathematicians and physicists, with many con-
tributions to both mathematics and physics coming out of this mix. The books
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should certainly be on the shelf of every mathematician with an interest in con-
nections with physics. By now Feynman integrals and Feynman diagrams have
indeed infiltrated the mathematical camps. The integrals are still not necessarily
defined, but the connections with rigorous mathematics are so strong in nearly all
these cases that the testing ground for functional integrals has now shifted from
the results of physical experiment to the results of proved conjectures emanating
from the integrals. These books give a sweep of clear mathematical exposition for
many of these issues. Here follows a quick description of the contents.

Volume 1 begins with a glossary of terms. You can look up “anomaly”, “BRST”,
“supergravity” or “Feynman diagram”. Curiously, “string” is not in the glossary. It
is a good place for a glossary, right up front ready to excite and satisfy the reader’s
curiosity.

Part 1 of the book is entitled “Classical Fields and Supersymmetry”. The first
article is “Notes on Supersymmetry” — following lectures of Joseph Bernstein with
notes by Pierre Deligne and John Morgan. This covers multilinear algebra, graded
objects, supertrace, the Berezin integral, super manifolds and super Lie algebras.
This article is followed by “Notes on Spinors” by Pierre Deligne, treating spinors
and Clifford algebras. After this an article on “Classical Field Theory” by Pierre
Deligne and Daniel S. Freed is a very clear mathematical treatment of classical fields
and Lagrangians including electromagnetism, gauge theory and Yang-Mills theory,
discussion of topological terms, Chern-Simons forms and the Wess-Zumino-Witten
model. Then comes “Supersolutions” by Pierre Deligne and Daniel S. Freed dis-
cussing superspace, supersymmetry, sigma models and Yang-Mills theory. A sum-
mary of sign conventions occurs in the article “Sign Manifesto” by Pierre Deligne
and Daniel S. Freed.

Part 2 of Volume 1 is entitled “Formal Aspects of QFT” and begins with “Note
on Quantization” by Pierre Deligne. This essay discusses quantization in the con-
text of the replacement of Poisson brackets by commutators and the mathematical
general treatment that emanates from this key idea of Dirac. Then comes an “In-
troduction to QFT” by David Kazhdan giving the Wightman axioms and their
consequences for free field theory, scattering theory and Feynman graphs. The
next lesson is “Perturbative Quantum Field Theory” by Edward Witten, a pas-
sage through correlation functions, specific Lagrangians, perturbative expansion
and Feynman diagrams, Feynman integrals, renormalization, critical dimensions
(for renormalization) for sigma models, gravity, gauge theory, operator product ex-
pansions, scattering theory and asymptotic freedom. Then comes “Index of Dirac
Operators” by Edward Witten with the heat equation and a path integral proof of
the Atiyah-Singer index theorem for the Dirac operator, Dirac operators on the loop
space LM of a manifold M, modular properties and circle actions. Then the book
returns to basics with an “Elementary Introduction to QFT” by Ludwig Faddeev.
This article starts with a clear description of observables and states, does path inte-
gral, quantization, harmonic oscillator, and begins quantum field theory, S-matrix,
Lagrangians, with applications to electromagnetism, gravity and Yang-Mills theory.
Part 2 ends with “Renormalization Groups” by David Gross and a “Note on Di-
mensional Regularization” by Pavel Ettingof. The article by David Gross discusses
renormalization group, applications to phase transition, dimensional regularization,
dynamical mass generation and symmetry breaking in the Gross-Neveu model and
the Wilsonian renormalization group equation.
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But we should not forget the homework problems. The first volume ends with
the statements and solutions of the many problems that were distributed to the
group during the special year (1996-1997) at the Institute for Advanced Study at
Princeton. The problems are edited by Edward Witten with solutions by different
members of the group.

Volume 2 begins with Part 3: “Conformal Field Theory and Strings”. The first
set of lectures is by Krzysztof Gawedzki on Conformal Field Theory. These cover
conformal free fields, axiomatic approach to conformal field theory, perturbative
analysis of two-dimensional sigma models, exact solutions of Wess-Zumino-Witten
and coset theories, functional integrals, axiomatic approaches, Segal’s topological
geometric approach, sigma models, renormalization group and the Wess-Zumino-
Witten model. Then come the lectures on “Perturbative String Theory” by Eric
D’Hoker. These consist of an intuitive introduction to strings, the loop expansion,
worldsheet action, free bosonic strings and the transition to conformal field theory
and Virasoro algebra, spectrum, states, vertex operators, identification of the gravi-
ton in relation to the string, Chan-Paton rules, string amplitudes and moduli space
of curves, Faddeev-Popov Ghosts and BRST quantization, strings on general man-
ifolds, free superstrings, heterotic strings, supersymmetry and supergravity. This
article by D’Hoker in the second volume should certainly be scanned first by any
reader interested in the physical background and motivations for the mathematics
that is discussed throughout this collection. The lectures on strings are followed
by “Super Space Descriptions of Super Gravity” by Pierre Deligne and “Notes on
2d Conformal Field Theory and String Theory by Dennis Gaitsgory (explicating
D’Hoker and making it much more abstract). And finally, “Kaluza-Klein Compact-
ification, Supersymmetry and Calabi-Yau Spaces” by Andrew Strominger, a study
of the Lagrangian arising from the heterotic string in 10 dimensions, the Kaluza-
Klein theory, Einstein’s equations, supersymmetry and Calabi-Yau manifolds.

Part 4 is entitled “Dynamical Aspects of QFT” and begins with “Dynamics of
Quantum Field Theory” by Edward Witten. This covers dynamics of gauge theo-
ries, symmetry breaking, Goldstone’s theorem, infrared behaviour, BRST quanti-
zation, sigma models, large N limit of sigma model to Grassmannians, Bose-Fermi
correspondence and applications, two-dimensional gauge theory of bosons, Wilson
line operator and confinement, abelian duality, solitons, 't Hooft loops and confine-
ment, quantum gauge theories in 2 dimensions and intersection theory on moduli
spaces, supersymmetric field theories, Landau-Ginzburg description of N=2 mini-
mal models and quantum cohomology of Kahler manifolds, four-dimensional gauge
theories, Yang-Mills and a description of the physical background to the Seiberg-
Witten equations. Witten’s article is followed by “Dynamics of N=1 Supersym-
metric Field Theories in Four Dimensions” by Nathan Seiberg, covering the role of
electric-magnetic duality in dynamics, relations with string theory, the possibility of
experimental verification of supersymmetry, and topological quantum field theory
based on supersymmetry.

This completes a survey of the contents. These two volumes constitute an ex-
traordinary resource for anyone interested in theoretical physics and its relations
with mathematics.
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