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The fundamental problem of enumerative combinatorics is to determine the num-
ber of elements of a set. More precisely, given an infinite indexed collection {Ai}i∈I
of finite sets, we want to find a formula for the cardinality of Ai as a function of i,
or at least a method for determining the number of elements of Ai that is easier (or
more interesting) than counting them one at a time. There are many interesting
mathematical problems that can be phrased as counting problems but to which
the methods of enumerative combinatorics do not apply; for example, problems
of counting groups will generally use the techniques of group theory rather than
of enumerative combinatorics, and some seemingly reasonable problems, such as
counting transitive relations on a set of n elements, turn out not to be amenable to
the methods of enumerative combinatorics. But surprisingly many different kinds of
objects can be counted, and counting them often involves interesting mathematics.

The two fundamental tools of enumerative combinatorics are bijections and gen-
erating functions. Two sets A and B have the same cardinality if and only if
there is a bijection from A to B, so a bijection from A to B allows us to count
the elements of A by counting the elements of B. As a very simple example, a
composition of an integer m is a sequence (a1, a2, . . . , ak) of positive integers with
sum m. There is a bijection from the set of compositions of n + 1 to the set
of subsets of {1, 2, . . . , n}: the composition (a1, . . . , ak) corresponds to the subset
{a1, a1 + a2, . . . , a1 + · · · + ak−1}. So from the fact that there are 2n subsets of
{1, 2 . . . , n}, we get that there are 2n compositions of n+ 1.

A more interesting example is given by the enumeration of Dyck words, which are
words in the letters X and Y with as many X ’s as Y ’s, and with the property that
any initial segment contains at least as many X ’s as Y ’s. For example, XXYXY Y
is a Dyck word, but XXYXY Y Y X is not. If we replace each X with a left
parenthesis and each Y with a right parenthesis, then a Dyck word becomes a
sequence of paired parentheses; thus XXYXY Y becomes (()()). We can count
Dyck words of length 2n by starting with the

(
2n
n

)
words made up of n X ’s and

n Y ’s and subtracting the number of these words that are not Dyck words. A
bijection due to D. André [2] shows that

(
2n
n−1

)
of these words are not Dyck words:

Given a word with n X ’s and n Y ’s that is not a Dyck word, find the first Y
that violates the condition and interchange all X ’s and Y ’s that occur after this
Y . (For example, XXY Y Y XXY becomes XXY Y Y Y Y X .) We obtain a word
with n − 1 X ’s and n + 1 Y ’s; this gives a bijection from the set of words with n
X ’s and n Y ’s that are not Dyck words to the set of all words with n− 1 X ’s and
n + 1 Y ’s. Thus the number of Dyck words of length 2n is the Catalan number
Cn =

(
2n
n

)
−
(

2n
n−1

)
= 1

n+1

(
2n
n

)
.
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Recurrences can be obtained from bijections. Every nonempty Dyck word d has
a unique factorization

d = d1Xd2Y,(1)

where d1 and d2 are Dyck words, and this factorization gives a bijection from Dyck
words of length n > 0 to ordered pairs of Dyck words of total length n− 1, which
yields a recurrence for the number Cn of Dyck words of length n:

Cn =
n−1∑
k=0

CkCn−k−1.(2)

The generating function for a sequence a0, a1, . . . is the formal power series a0 +
a1x+ a2x

2 + · · · . Generating functions are often presented as a method for solving
recurrences. Thus the recurrence for the Fibonacci numbers, Fn = Fn−1 + Fn−2

for n ≥ 2, with F0 = 0 and F1 = 1, yields the equation f(x) = 1 + (x+ x2)f(x) for
the generating function f(x) = F0 + F1x+ · · · , which gives f(x) = x/(1− x− x2),
and the recurrence (2) for the Catalan numbers yields the equation

C(x) = 1 + xC(x)2(3)

for the generating function C(x) = C0 + C1x+ · · · ; solving for C(x) gives

C(x) =
1−
√

1− 4x
2x

.

However, a different, and more useful, interpretation of generating functions
explains formulas like (3) with no need to write down a recurrence like (2). To
“count” a set S, not necessarily finite, we assign to each element u of S a weight
w(u) in some formal power series ring. Then the generating function of S with
respect to the weight function w is

∑
u∈S w(u) (where we require that the sum

exist). A decomposition of S that is compatible with w gives us an identity involving
the generating function of S. For example, we may assign a Dyck word of length
2n the weight xn. Then the factorization (1) yields w(d) = xw(d1)w(d2); so if we
define C(x) to be the sum of the weights of all Dyck words, we obtain (3) directly
from (1).

Richard Stanley’s Enumerative Combinatorics, Volume 1 [13], appeared in 1986,
and its interesting choice of topics, clear prose style, numerous exercises, and schol-
arly erudition quickly won it a large following. The long-awaited Volume 2 ap-
peared in 1999, and it is an impressive work of scholarship that surpasses the high
standards set by Volume 1. Stanley was the awarded the American Mathematical
Society’s 2001 Leroy P. Steele Prize for Mathematical Exposition in recognition of
the completion of the two volumes.

Volume 2 continues the chapter numbering of Volume 1, so its three chapters are
numbered 5, 6, and 7. In Chapter 5, Stanley covers two of the most important topics
in enumerative combinatorics not covered in Volume 1: exponential generating
functions and Lagrange inversion. Suppose that for any set S of n “labels”, we
can make an different structures of some type out of these labels. Then we define
the exponential generating function for this type of structure to be

∑
n anx

n/n!.
For example, there are n! permutations of a set of n labels, so the exponential
generating function for permutations is

∑
n n!xn/n! = (1 − x)−1; there are 2(n2)

graphs with a given n-element vertex set, so the exponential generating function
for graphs is

∑
n 2(n2)xn/n!. Exponential generating functions are useful in counting
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labeled structures because of the way they multiply. If a(x) =
∑

n anx
n/n! and

b(x) =
∑

n bnx
n/n!, then a(x)b(x) =

∑
n cnx

n/n!, where

cn =
∑
k

(
n

k

)
akbn−k.

To interpret this formula combinatorially, suppose that α and β are types of struc-
tures with exponential generating functions a(x) and b(x). Then c(x) is the ex-
ponential generating function for structures consisting of an ordered pair of two
structures, the first of type α and the second of type β: Given a set of n labels,
we construct such a pair by choosing an integer k, choosing a k-element subset of
the label set in

(
n
k

)
ways, and then choosing a structure of the first type on these k

labels in ak ways and choosing a structure of the second type on the remaining n−k
labels in bn−k ways. (A more formal account of labeled structures can be found in
[3].) For example, every permutation can be represented as a pair consisting of a
derangement (permutation without fixed points) and a set of fixed points, so if D(x)
is the exponential generating function for derangements, then (1− x)−1 = D(x)ex,
and thus D(x) = e−x/(1− x).

In addition to multiplying exponential generating functions, we can also compose
them. Since a(x)k counts k-tuples of structures of the type counted by a(x), if a(x)
has no constant term, we can divide by k! to see that a(x)/k! counts k-element
sets of structures, each counted by a(x), and thus ea(x) counts sets of an arbitrary
number of these structures. This “exponential formula” has many applications.
For example, since any graph may be viewed as a set of connected graphs, the
exponential generating function c(x) for connected graphs satisfies the equation
ec(x) =

∑
n 2(n2)xn/n!, from which its coefficients can easily be computed.

Trees are connected graphs without cycles. Arthur Cayley [4], in one of the
earliest results in enumerative combinatorics, proved (or at least asserted) that
there are nn−2 trees on n vertices. To prove Cayley’s formula using exponential
generating function, we choose one of the n vertices of a tree to be the “root”, so
Cayley’s formula is equivalent to the statement that there are nn−1 rooted trees on
n vertices. A rooted tree can be obtained by taking a set of rooted trees and a new
root and adding an edge from every old root to the new root. This construction
gives a functional equation for the exponential generating function R(x) for rooted
trees:

R(x) = xeR(x).(4)

The equation (4) is typical of functional equations that arise in enumerative com-
binatorics. It can be solved by the Lagrange inversion formula, which says that if
f(x) = xG(f(x)), then the coefficient of xn in f(x)k is k/n times the coefficient of
xn−k in G(x)n. Stanley gives three proofs of the Lagrange inversion formula: one
is an algebraic proof, using properties of formal power series; one uses exponential
generating functions and a bijection due to Prüfer [11] that gives a direct proof of a
refinement of Cayley’s formula; and one uses a different bijective proof of a formula
for counting generalizations of Dyck words, with the interpretation of the equation
to be solved similar to that of (3).

The rest of Chapter 5 deals with two related, but more specialized, topics: ex-
ponential structures, which give a poset-theoretic approach to generalizations of
the exponential formula, and the matrix-tree theorem, which gives a determinantal
formula for counting spanning trees of a graph.
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After the text of of each chapter come historical notes, with complete refer-
ences. Chapter 5 has four pages of notes and 70 references. The chapter concludes
with 74 exercises, most with more than one part. These exercises contain an enor-
mous amount of additional material on topics including threshold graphs, Eulerian
polynomials, degree sequences of graphs, Mehler’s formula for Hermite polynomi-
als, blocks, polynomials of binomial type, series-parallel posets, alternating trees,
noncrossing partitions, and parking functions, and all have either a solution or a
reference to the literature.

Chapter 6 covers three classes of formal power series, together with their enu-
merative applications: algebraic, D-finite, and noncommutative. (Rational power
series were discussed in Volume 1.) The chapter begins with a discussion of some
of the connections between algebraic functions and formal power series, notably
Puiseux’s theorem, which implies that any algebraic function of x can be expressed
as a Laurent series in some fractional power of x. Next, Stanley considers some
algebraic functions that arise in enumeration problems whose coefficients generalize
the Catalan numbers. For any set S of positive integers, let u = u(x, t) satisfy

u = x

(
t+

∑
j∈S

uj
)
.(5)

Then the coefficients of u have combinatorial interpretations in terms of plane trees,
lattice paths, dissections of a polygon, and parenthesizations. The quadratic cases
of (5) are especially important and give rise to several much-studied sequences,
further properties of which appear in the exercises to this chapter. If S = P
(the set of positive integers), the coefficients are Narayana numbers ; if x = 1 and
S = P− {1}, they are Schröder numbers ; if t = 1 and S = {1, 2}, they are Motzkin
numbers ; and if x = 1 and S = {2} or if t = 1 and S = P, they are Catalan
numbers.

Although most occurrences of algebraic generating functions in enumeration cor-
respond to equations like (5) whose combinatorial interpretation is straightforward,
there are examples where algebraicity is not so obvious. One of the most interest-
ing, described in problem 6.41, involves “2-stack-sortable” permutations. Given any
sequence w of distinct integers, factor w as unv, where n is the largest entry of w.
Define the “stack-sorting” operator S recursively by S(w) = S(u)S(v)n, where S
takes the empty sequence to itself. A permutation π of {1, 2, . . . , n} is called stack-
sortable if S(π) = 1 2 · · ·n and 2-stack-sortable if S(S(π)) = 1 2 · · ·n. It is easy to
show that the number stack-sortable permutations is the Catalan number Cn. It
is quite difficult to show (as was conjectured by Julian West and proved by Doron
Zeilberger [14]) that the number of 2-stack sortable permutations of {1, 2, . . . , n}
is 2(3n)!/(n+ 1)! (2n + 1)!. The generating function is algebraic, but not for any
obvious combinatorial reason.

D-finite (also called holonomic) power series include the better known algebraic
power series. A power series f(x) is D-finite if it satisfies a linear homogeneous
differential equation with coefficients that are polynomials in x, or equivalently,
if the set of its derivatives dkf/dxk spans a finite dimensional vector space over
the field of rational functions of x. This property implies that the coefficients of
f satisfy linear homogeneous recurrence relations with polynomial coefficients and
can therefore be computed efficiently.
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Noncommutative generating functions arise very naturally in enumeration. The
set of words in an alphabet becomes a monoid under the operation of concatena-
tion, and taking formal sums gives an algebra of formal power series in noncommut-
ing variables. One can define rational and algebraic noncommutative power series
(though the definitions are more complicated than one might expect), and Stanley
gives a nice exposition of their basic properties. As an example of a noncommu-
tative algebraic series, we may consider the sum D of all Dyck words as a formal
power series in the noncommuting variables X and Y . The factorization (1) gives
the equation D = 1 +DXDY , and this implies that D is algebraic.

Chapter 6 contains 74 exercises. A highlight is exercise 6.19, which contains 66
combinatorial interpretations of the Catalan numbers. Many of the other exercises
involve the Catalan numbers and their relatives, but some contain results less closely
related to combinatorics (and unlikely to be familiar to most combinatorialists).
One that I found particularly intriguing is exercise 6.4, in which Stanley points out
that Puiseux’s theorem fails in positive characteristic, and gives the characteristic
p example yp − y− x−1, due to Chevalley [5, §IV.6], whose roots are not fractional
Laurent series but which has the factorization

yp − y − x−1 =
p−1∏
i=0

(
y − i−

∑
j≥1

x−1/pj
)

due to Abhyankar [1].
Chapter 7, by far the longest of the three chapters, is on symmetric functions. A

formal power series in the infinitely many variables x1, x2, . . . , is called symmetric
if it is invariant under any permutation of the variables. These symmetric formal
power series are traditionally called symmetric functions even though they are not
functions in the usual sense. The homogeneous symmetric functions of degree n
form a vector space, denoted Λn, whose dimension is the number of partitions of
n. There are several important bases for Λn. If λ = (λ1, . . . , λk) is a partition of
n, where λ1 ≥ · · · ≥ λk, then the monomial symmetric function mλ is the sum of
all distinct monomials of the form xα1

i1
· · ·xαnin for some permutation (α1, . . . , αn) of

λ. For each integer r ≥ 0, the rth elementary symmetric function er is the sum of
all products of r distinct variables, so e0 = 1, and for r > 0,

er =
∑

i1<i2<···<ir

xi1xi2 · · ·xir .

The rth complete symmetric function hr is the sum of all monomials of degree r,
so h0 = 1, and for r > 0,

hr =
∑

i1≤i2≤···≤ir

xi1xi2 · · ·xir .

The rth power sum symmetric function, for r ≥ 1, is

pr =
∑
i

xri .

For any partition λ = (λ1, . . . , λk), we define eλ = eλ1 · · · eλk , hλ = hλ1 · · ·hλk , and
pλ = pλ1 · · · pλk . Then {mλ}, {eλ}, {hλ}, and {pλ}, where λ runs over all parti-
tions of n, are bases for Λn. There is a symmetric scalar product on Λn for which
the monomial and complete symmetric functions are biorthogonal (〈hλ,mµ〉 =
〈mµ, hλ〉 = δλ,µ) and the power sums are orthogonal (but not orthonormal).
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There is a fifth important basis for Λn which is less obvious and more interesting:
the Schur functions. They may be defined most simply as determinants in the
complete symmetric functions. If λ is a partition with n parts, we define the Schur
function sλ by

sλ = det(hλi−i+j)1≤i,j≤n,

where we take hm = 0 for m < 0.
The coefficients of the Schur functions have a very interesting combinatorial

interpretation, which is the focus of Stanley’s approach, in contrast to Macdonald
[8], the standard reference on this subject. If λ = (λ1, . . . , λk) is a partition of n,
a semi-standard Young tableau (SSYT) of shape λ is an array of n boxes, with λi
left-justified boxes in row i, filled with positive integers that are weakly increasing
in rows and strictly increasing in columns. For example,

1 1 2 4

2 3

3 5

is an SSYT of shape (4, 2, 2). Then the coefficient of xr11 · · ·x
rj
j in sλ is the number

of SSYT of shape λ containing ri entries equal to i for each i. The key to the
combinatorial theory of Schur functions is an insertion algorithm, due (in a slightly
less general form) to Craige Schensted [12]: given an SSYT P and a positive integer
k, Schensted’s algorithm creates a new SSYT P ′ whose entries are those of P
together with k, and whose shape is the shape of P with an additional box added.
Schensted’s insertion algorithm is bijective in the sense that if we know P ′ and
the shape of P , then we can recover P . An important consequence of Schensted’s
insertion algorithm is the Robinson-Schensted-Knuth (RSK) algorithm, which gives
a bijection between ordered pairs of SSYT of the same shape and matrices of
nonnegative integers. The RSK algorithm yields the Cauchy identity∑

λ

sλ(x1, x2, . . . )sλ(y1, y2, . . . ) =
∏
i,j

1
1− xiyj

,

which implies, with a bit of linear algebra, that the Schur functions are orthonormal.
The Schur functions are closely related to the irreducible representation of the

symmetric and general linear groups. It follows from the orthonormality of the
Schur functions that when they are expanded in power sum symmetric functions,
the coefficients are (up to an easily described factor) the values of the irreducible
characters of symmetric groups. Moreover, the Schur functions in a finite number of
variables, interpreted as functions of the eigenvalues of a matrix, are the characters
of the irreducible polynomial representations of general linear groups.

In addition to the basic theory of symmetric functions, Chapter 7 discusses
several related topics: quasi-symmetric functions, enumeration of plane partitions,
and enumeration under group action (Pólya theory [9], [10]).

There are two appendices to Chapter 7. The first appendix (by Sergey Fomin)
discusses some additional combinatorial constructions on tableaux and includes a
proof of the Littlewood-Richardson rule, which gives a combinatorial interpretation
to the coefficients in the expansion of a product of two Schur functions into Schur
functions. The second appendix explains the connection between Schur functions
and representations of general linear groups.
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The two volumes of Enumerative Combinatorics cover nearly every major topic
in enumerative combinatorics to a greater or lesser degree. The most important
topic I can think of that is not mentioned at all is the enumeration of planar maps.
(A good account can be found in Goulden and Jackson [6]; they also treat sequences
and lattice paths more extensively than does Stanley.) A topic that receives only
brief coverage is that of enumeration under group action, and in particular the
enumeration of unlabeled graphs of various types. A comprehensive account of
the theory up to 1972 was given by Harary and Palmer [7], and a more modern
approach to the subject has been given recently by Bergeron, Labelle, and Leroux
[3]. However, an exposition in which symmetric functions appear in the central role
that (in this reviewer’s opinion) they deserve does not yet exist.

Enumerative Combinatorics can be read on two levels. The text, together with
the easier exercises, is a very thorough introduction to enumerative combinatorics
that is accessible to a beginning graduate student or even a good undergradu-
ate. With its more advanced exercises, historical notes, and extensive references,
the books are an indispensable resource for the expert. A supplement, which in-
cludes errata, updates, and new material, can be downloaded from the author at
http://www-math.mit.edu/~rstan/ec/.
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[10] G. Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical

Compounds, Springer-Verlag, New York/Berlin, 1987. MR 89f:05013
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