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This is a book that I like. So says its author in the foreword to this English
edition, and the reviewer concurs. Indeed, the book is well-written, it is well-
organized, and it contains a beautiful development of the theory of stable groups.

The book under review, an English translation of Poizat’s self-published Groupes
Stables, retains a fresh perspective on a subject that has undergone substantial
development since the publication of the French original a decade and a half ago.
The mathematical ideology propounded in this book has been largely confirmed,
even though some of the conjectures have been refuted.

Poizat argues, sometimes explicitly, but generally through practice, that the
theory of stable groups grows organically from the study of models and from the
internal robustness of its own mathematical theory. This orientation is reflected in
the organization of the book in that, with the exception of the first few sections
of the first chapter which concerns easy consequences of the definition of a stable
group, the theory is developed from the special to the general and the axiomatic
approach is eschewed.

The introduction opens with the assertion that the book under review is a math-
ematics book for logicians to complement the author’s earlier book [3], now also in
an English translation [4], which is a logic book for mathematicians. The introduc-
tion is addressed primarily to nonlogicians with the intent of inviting them to study
stable groups. However, even though the author cautions that only certain sections
should trouble nonlogicians, anyone unfamiliar with stability theory would find all
of the book except, perhaps, parts of the first and fourth chapters, impenetrable.
A mathematician interested in this subject should work through a text on model
theory such as [4] or [2] before delving into this book.

The title of the book under review does describe its subject matter exactly.
However, while the author is justified in saying I hope you know what a group is to
explain the absence of a definition, since the word stable is overused in mathematics,
it requires some explanation. Strictly speaking, a stable group is a group whose
theory in some language extending the language of groups is stable in the sense of
model theory. This definition is meaningful only to a logician, but the book under
review is aimed at a wider audience, and Poizat demonstrates in the introduction
that the relevant notions from logic may be expressed without a lengthy discussion
of formal languages, well-formed formulas, theories, and the rest of the syntactic
apparatus of formal logic.

A structure is a set M given together with a family Dn of distinguished subsets
of Mn (called the definable subsets of Mn) for each n ∈ N. We assume basic clo-
sure properties on the definable sets. Namely, each Dn is a sub-Boolean algebra
of P(Mn), every singleton is definable, the projection of a definable set is defin-
able, Cartesian products of definable sets are definable, the diagonal is definable,
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and the class of definable sets is closed under coordinate permutations. Poizat in-
cludes another closure condition related to the existence of definable quotients in
his definition of a structure.

Any group may be considered as a structure by taking for the class of definable
sets the smallest class of sets satisfying the closure conditions for definable sets
and containing the graph of the function (x, y) 7→ xy−1. We call such a structure
a pure group. It is also possible to consider a group as an enriched structure in
which there are other definable sets. This extra generality occurs in practice and
is not introduced merely for its own sake. For example, when the additive group
of the complex numbers is considered as a pure group, the definable sets are just
finite Boolean combinations of affine spaces while every Zariski constructible set is
definable once the graph of multiplication is adjoined to the class of definable sets.

We say that a structure (M, {Dn}∞n=0) is stable if for each definable set X ∈
Dn+m there is a natural number N such that if a0, . . . , aN ∈ Mn and b0, . . . bN ∈
Mm, then (ai, bj) ∈ X for some i > j or (ai, bj) /∈ X for some i ≤ j. (This is
really the definition of stability for the theory of a structure, but this distinction
is immaterial to the subject at hand.) At this point we have a formal definition
of a stable group: A stable group is a stable structure (G, {Dn}∞n=0) having a
distinguished element e ∈ G and distinguished definable sets Γ ∈ D3 and I ∈ D2

for which I is a graph of a function ι : x 7→ x−1 and Γ is the graph of a function
we denote by µ : (x, y) 7→ xy for which (G,µ, ι, e) is a group.

The reader may very well wonder what the condition of stability could possibly
have to do with group theory. The theory developed in this book answers this query
admirably.

Poizat introduces a class of groups with a clear geometric provenance before
delving into the full intricacies of general stable groups. A ranked universe is a
structure (M, {Dn}∞n=0) given together with a function d from the class of definable
sets to N ∪ {−∞} for which

• d(X) = −∞ if and only if X is empty;
• d(X) ≥ n+1 if and only if there is a countable sequence X0, X1, . . . of pairwise

disjoint subsets of X for which d(Xi) ≥ n for each i;
• if f : X → Y is a definable function and e = d(f−1{y}) for all y ∈ Y , then
d(X) = e+ d(Y ); and
• for each definable function f : X → Y there is a natural number N such that

if |f−1{y}| > N , then f−1{y} is infinite.

If M is an algebraic variety over an algebraically closed field and one takes the
class of Zariski constructible sets in the various powers of M as the definable sets
and algebro-geometric dimension for d, then M is a ranked universe. In particular,
an algebraic group considered with all the structure coming from constructible sets
is a ranked group.

The notion of a ranked universe is closely connected with, though in general
distinct from, that of a structure of finite Morley rank. A structure has finite Morley
rank if there is a function R defined on the class of definable sets taking values in
N∪{−∞} for which R(X) = −∞ if and only if X = ∅ and R(X) ≥ n+1 just in case
for every natural number m there are m pairwise disjoint subsets X1, . . . , Xm ⊆ X
of X each with R(Xi) ≥ n. A structure with finite Morley rank is necessarily stable
and for a group having finite Morley rank is equivalent to being a ranked universe.
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Thus, ranked groups provide examples of stable groups. Before the reader con-
cludes that this class of groups includes many groups beyond algebraic groups, I
should remark that the main conjecture for groups of finite Morley rank is that
there are no exotic groups of finite Morley rank. More precisely, the Cherlin-Zilber
conjecture asserts that every (infinite) simple group of finite Morley rank is an
algebraic group over an algebraically closed field. Despite the concerted efforts of
teams of group theorists and model theorists, the Cherlin-Zilber conjecture remains
wide open. The second and third chapters of the book under review concentrate on
groups of finite Morley rank. The book [1] goes deeper into the theory of groups of
finite Morley rank, but it owes a debt to Poizat.

Let us now discuss the contents of this book in some detail.
In the first chapter, the basic consequences of stability for a group are proved.

These propositions have very simple proofs, but their implications are strong. For
example, it is shown that a stable associative cancellative monoid must be a group,
a fact implying that a stable integral domain must be a field and a nonempty
definable subset of a group which is closed under multiplication must be a subgroup.
This result is followed by a series of propositions on descending chain conditions
on subgroups of stable groups. The notion of the connected component (of the
identity) of a stable group is generalized from algebraic groups. With algebraic
groups the connected component of the identity is usually defined topologically,
but we need a more abstract definition for general stable groups. We say that a
group G (considered as a structure) is connected if there is no proper definable
subgroup of G of finite index. In general, even for a stable group, there need not
exist a minimal subgroup of finite index. However, for each formula φ(x, y), where
x ranges over G and y ranges over some Cartesian power of G, there is a local
connected component of G associated to φ. We define G0(φ) to be the intersection
of all subgroups of G of the form Ha := {g ∈ G : φ(g, a)} of finite index in G. For a
stable group G, the group G0(φ) is necessarily definable. While the local connected
component makes sense in general, the main application of this idea concerns the
formula defining the centralizer of an element: φ(x, y) := xyx−1y−1 = 1. A number
of structural theorems on the centralizer connected component of a stable group are
proved in this chapter. The first chapter ends with a proof that an ℵ0-categorical
group of finite Morley rank is abelian-by-finite.

The second chapter deals, mostly, with groups of finite Morley rank. General
stable groups have generic types, but the full development of this theory is delayed
until the fifth chapter. In the context of groups of finite Morley rank, we may
define a type p to be generic in the group G if the Morley rank of p is equal to
that of G itself. Some fruitful consequences of this notion are developed in this
chapter. We say that a definable subset X of a group G is indecomposable if for
any definable subgroupH ≤ G either X/H is infinite or X/H is a singleton. Zilber’s
Indecomposability Theorem, which states that the group generated by a collection
of indecomposable sets (each of which contains the identity element of the group) is
definable, is proven in this chapter as an application of the work on generic types.
The third and fourth sections of this chapter consist of a proof of the equivalence of
being ranked and of having finite Morley rank for groups. The key to this proof is
a straightforward application of Zilber’s Indecomposability Theorem to show that
a simple group of finite Morley rank is almost strongly minimal.

Binding groups, or definable automorphism groups, appear in the fourth section
of the second chapter. While at first blush this topic may seem out of place in
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the development of the subject, it serves to introduce (or recall) some ideas from
stability theory, such as orthogonality, internality, analysis, etc., that are essential to
Hrushovski’s more refined analysis of stable groups whose explication begins at the
end of chapter two but about which we will speak later in this review. The theorem
on binding groups and its corollaries justify the assertion of the naturality of stable
groups, as binding groups arise from purely stability theoretic considerations even
in theories in which there is no obvious algebraic content. In turn, the theory of
binding groups has been applied to the algebraic study of differential equations to
produce a differential Galois theory properly generalizing the Picard-Vessiot theory
for linear differential equations and even Kolchin’s theory for so-called strongly
normal extensions.

The third chapter is entitled “Fields”, but its contents are better described by
its subtitle “Algebraic properties of groups of finite Morley rank”. The first sec-
tion opens with Macintyre’s theorem that an infinite ω-stable field is necessarily
algebraically closed, a result which implies that only algebraically closed fields and
finite fields eliminate quantifiers in the language of fields. Some propositions on
the possibilities for definable nonlinear additive maps in fields of finite Morley rank
close out this section. The open problem about whether there is a field K with an
automorphism σ : K → K which is not some integral power of the Frobenius auto-
morphism such that the structure (K,+, ·, σ) has finite Morley rank is mentioned
in this section and some steps towards a solution are taken. It should be remarked
that this question is still open even if one assumes that the structure has Morley
rank one. In the second section, it is shown that from certain definable groups of
automorphisms of an abelian group (all in a structure of finite Morley rank) a field
is definable. Thus, the analysis of fields of finite Morley rank is directly relevant
to the study of definable groups of automorphisms of groups of finite Morley rank.
The third section concerns Reineke’s theorem on minimal ω-stable groups and its
consequences. We say that an infinite group G is minimal if every proper definable
subgroup is finite. Reineke showed that a minimal superstable group is abelian. It
follows that every infinite superstable group contains an infinite definable abelian
subgroup. The main point of the fourth section is that the various groups associ-
ated to commutators (for example, the various derived groups and the groups in
the central series) of a group of finite Morley rank are definable. Basic properties
of solvable and semisimple groups of finite Morley rank are developed in the fifth
and sixth sections. The seventh section concerns a result on definable actions of
finite Morley rank groups on strongly minimal sets (definable sets of Morley rank
and Morley degree one). That is, if a finite Morley rank group G acts faithfully and
transitively on a strongly minimal set A, then G has Morley rank at most 3 and
either G is abelian and A is a principal homogeneous space for G or A is the affine
or projective line over an algebraically closed field and G is a group of fractional
linear transformations.

The third chapter ends with an analysis of bad groups. A bad group is a nontrivial
connected nonsolvable groupG of finite Morley rank in which every proper definable
subgroup is nilpotent by finite. It is shown in this section that no bad group can
be elementarily equivalent to an ultraproduct of locally finite groups. In particular,
a bad group cannot be isomorphic to any algebraic group. It is also shown that
every bad group is a definable extension of a simple bad group. Thus, if there are
any bad groups, then the Cherlin-Zilber conjecture is false. The notion of a Borel
group in a group G of finite Morley rank—namely, a maximal definable, connected,
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proper subgroup—is introduced in the proof of the main theorem of this section,
and these Borels play the rôle of their more classical counterparts in the theory of
algebraic groups.

The fourth chapter, “Geometry: Introduction to algebraic groups”, should be
understood as a model theorist’s introduction to algebraic groups. The first four
sections consist of a model theoretic treatment of Weil-style algebraic geometry. For
example, the ideas of varieties, the Zariski topology, and generic point in a variety
are presented and then interpreted model theoretically. The fifth section contains
a proof of the Weil-Hrushovski group chunk theorem: if a constructible set has the
structure of a group with the group operations given by definable functions, then,
in fact, it is definably isomorphic to an algebraic group. The chapter ends with a
proof of Rosenlicht’s theorem that a connected algebraic group is an extension of
a linear algebraic group by its center and with a couple of consequences about the
structure of groups definable in a pure algebraically closed field, including a version
of the Borel-Tits theorem that every group isomorphism between simple algebraic
groups over algebraically closed fields is given by an isomorphism of the underlying
fields followed by an isomorphism of algebraic groups.

In the fifth chapter, we leave the comfort of finite Morley rank groups to study
stable groups proper, but the theory continues to work even without the crutch
of a good dimension function. In a group G considered as a structure in some
language extending the language of groups, we say that the definable set X ⊆ G is
(right-)generic if there is some natural number n and elements g1, . . . , gn ∈ G such
that G =

⋃n
i=1 giX . We say that a type is (right-)generic if for each formula in

the type, the set it defines is (right-)generic. Directly from the definition of Morley
rank, it is easy to prove that any type of maximal rank is generic in this new
sense. It is something of a miracle that in any stable group there are generic types.
Moreover, in a strong sense, the generics control the group. For instance, every
element of a stable group may be expressed as the product of two realizations of
generic types.

Unlike in the case of ω-stable groups, ∞-definable groups appear in the theory
of general stable groups. An ∞-definable set X in a structure M is given by a
definable equivalence relation E on some power Mn of M and a collection {Xi}i∈I
of E-invariant definable subsets of Mn. We think of X as

⋂
i∈I Xi/E ⊆ Mn/E,

but this identification makes sense only if M is sufficiently saturated (|I|+-compact
would do). By an ∞-definable group we mean a group whose universe is an ∞-
definable set and whose group operations are given by the restriction of definable
functions to that set. A general stable group G does not have a definable connected
component, but it does have an ∞-definable connected component G0 ≤ G with
the property that G/G0 is profinite and if H ≤ G is a definable group of finite
index, then G0 ≤ H . Remarkably, G0 may be defined without any parameters, it
has a unique generic type, and the generic types of G are parametrized by G/G0.

As applications of the work on generics, a theorem of Hrushovski in pure model
theory, that every unidimensional theory is superstable, and another theorem of
Hrushovski on generically presented group actions are described at the end of the
chapter on generics.

With the sixth chapter we return to the context of stable groups with a rank on
the class of definable sets, though in this case we have the ordinal-valued Lascar or
U -rank. An important feature of U -rank for groups is that if H ≤ G is a definable
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subgroup, then U(H) + U(G/H) ≤ U(G) ≤ U(H)⊕ U(G/H) where ⊕ is Cantor’s
natural sum of ordinals. Using this inequality and properties of generic types, one
can show that if U(G) = ωαn + γ with 0 < n < ω and γ < ωα, then there is
a definable normal subgroup H ≤ G with U(H) = ωαn. This result allows one
to analyze superstable groups in terms of groups with monomial Lascar ranks and
to prove several results on superstable groups, including the fact that an infinite
superstable division ring is an algebraically closed field.

The book ends with a chapter on local weights in stable groups. A type p is
regular if for every extension q ⊇ p either q is a nonforking extension of p or q ⊥ p.
For example, if U(p) = ωα for some α, then p is regular. We say that an∞-definable
set X is p-internal if there is a definable function u(x1, . . . , xn) such that for each
element x ∈ X there are realizations a1, . . . , an of p such that x = u(a1, . . . , an).
Associated to a regular type p there is a dimension function wp, the local p-weight,
which takes values in N and is defined on p-internal sets. A more refined version of
the subgroup existence theorem for groups with U(G) = ωαn+γ is proved through
an analysis of local p-weight, and a number of analogues of results about groups of
finite Morley rank are proved with wp standing in for Morley rank.

This translation serves its intended purpose of making the contents of Groupes
Stables accessible to Anglophones, but there are three general defects with the
present translation. First, some technical terms, for which there are generally
accepted French and English versions, have been translated neologistically. For
example, the stability theoretic stabilizer of a type p is usually denoted by Stab(p)
and is called the stabilizer of p. In French, this group is denoted by Fix(p) and is
called the fixateur de p. The translator chose to denote this group by Fix(p) and
to call it the fixer of p. Notably, the translator was happy to call the set theoretic
stabilizer by its usual name even though its French appelation is also fixateur. Fixer
is defined in the text so that the reader is left with no doubt as to its meaning.
When quasi-strongly minimal sets appear, the reader must correctly deduce that
almost strongly minimal was meant and the reader should be aware that a son of a
type is an extension. Secondly, because of the difficulty of mathematical typesetting
before the wide availability of TEX, Latin characters were used for logical formulas
in the original edition. Even though it is now no more difficult to typeset ∃ than E,
logical formulas are still typeset with Latin characters. Finally, the original edition
was actually written in French, and not the dessicated mathematical French of
Bourbaki. There are puns, idiomatic expressions, and literary references throughout
the text (sometimes in the course of a proof). The literal translations of some of
this material can make very little sense. For example, it is remarked that a regular
type p may be indifferent to a group whose generic type is p-internal. The last line
of the justification for this remark is a regular type wants nothing to do with its
forking sons, a comment which in French is amusing rather than bemusing as un
type régulier ne veut avoir aucun commerce avec ses fils déviants.

The reader susceptible to provocation is advised to ignore the foreword to the
English edition of the book under review. While the reviewer finds the comments
on the use of English in mathematics objectionable on several grounds, there is
no need to insist that the author’s acquiescence to this English translation be ac-
companied by a corresponding surrender of his principles. The self-serving remarks
including the favorable comparison by the author between himself and Oscar Wilde
and Charles Baudelaire demand a response, but in the interests of preventing the
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author from claiming his crown of martyrdom, the response will be brief. The apol-
ogy proffered I am ready to offer my apologies to any person that my irresponsible
behavior has offended, hoping that I have caused to them no harm more serious
than a superficial irritation may seem genuine enough, but it is expressed in a way
and couched in a passage that allows the author to claim the mantle of the victim-
ized defender of free thought. As the author is no doubt aware, his tasteless joke
in the French edition of this book crossed the line between offensive and insult-
ing. Crowing about his touch of jubilation at join[ing] the restricted club of cursed
writers compounds the insult. A sincere apology had been in order, and any future
printing of this book should contain such an apology with the smug passages about
the author’s stunt excised.
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