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In the last ten years incredible progress has been made in the theory of nonlinear
dispersive equations. The term dispersive describes the fact that the solutions of
these equations are waves that tend to spread out spatially, when no boundary con-
straints are imposed. Two well known equations belong to this class: the nonlinear
Schrödinger equation (NLS), and the Korteweg-de-Vries equation (KdV). These
equations, together with combinations of them and the wave equation, have been
proposed as models for many basic wave phenomena in physics. Examples of these
phenomena include the propagations of signals in optic fibers, nonlinear ionic-sonic
waves in plasma in a magnetic field, and long waves in plasma. A satisfactory anal-
ysis of these phenomena could be accomplished by answering questions like long
time existence and uniqueness for the solution of the associated Cauchy problem,
regularity properties of the solution, continuity with respect to the initial profiles,1

scattering and soliton stability, possible blow-up of some norms in finite time, rate
of blow-up and stability of blow-up profiles.

The book Global solutions of nonlinear Schrödinger equations by J. Bourgain
focuses on the treatment of the nonlinear Schrödinger initial value problem

(1)
{
i∂tu+ ∆u+ σu|u|p−2 = 0, for σ = ±1,
u(x, 0) = φ(x) ∈ Hs(Rd) or Hs(Td).

It should be said that the questions addressed in the book are prototypical for all
types of dispersive equations.

As for many problems that come directly from investigating the real world, the
literature that treats the Schrödinger equation in one way or another is enormous.
The size of the bibliography is also due to the fact that often the same question, for
example well-posedness, can be addressed purely analytically or numerically. It is
also interesting to notice that sometimes the pure mathematical approach goes as
far as relating certain aspects of this equation to sophisticated concepts in algebra
and geometry (see for example [20]).

Bourgain’s book does not have the pretence to give a complete overview of the
Schrödinger equation; this would be practically impossible. It presents some of the
most important recent findings for, and addresses several open questions related to,

2000 Mathematics Subject Classification. Primary 35Q55.
1 All these properties are summarized under the expression local (if proved for short time) or

global (if proved for arbitrarily long time) well-posedness for the Cauchy problem.
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the initial value problem (1), using a pure mathematical approach. It is in a way
very fortunate that the book was published almost at the same time when C. Sulem
and P.-L. Sulem successfully managed in their survey work [45] to put in a clear
perspective the rigorous theory of the NLS equation and the physical understanding
of some of the phenomena described by it. In fact the “physical” motivation for
some of the questions that Bourgain addresses in his work are extensively explained
in [45].

In this review I chose to address only some aspects of the dense material that
Bourgain collects for us in this relatively short book. The choice I made is purely
dictated by the direction of my research and not at all by any sort of abstract
ranking of the subjects presented by the author.

Going back a couple of decades, the question of well-posedness for dispersive
equations was usually answered by proving a priori estimates in some Sobolev norms
for the solution, and then using these estimates and some compactness arguments
to actually prove the existence of the solution and various properties for it. Unfor-
tunately, this general argument, now known as the energy method, required quite
a lot of regularity to start with; see [44] for an overview. A much stronger tool
was found when it became clear that the solution of any linear dispersive initial
value problem in Rd can be viewed as the adjoint of the operator that restricts the
Fourier transform to an appropriate hypersurface.2 The tools were the strong and
beautiful theorems on Lp estimates for these operators [43]. In the context of the
well-posedness theory, these theorems came to be known as Strichartz estimates
[16], [22], [24]. These estimates control S(t)φ, the solution of the linear dispersive
equation, with respect to the initial data φ. One could then look at the nonlinear
term as a “small” perturbation of the linear equation, in particular when the initial
data are “small”, in a certain sense, or the time of existence is “short”. In the
case of the NLS (1) one uses the Duhamel principle to rewrite (1) as the integral
equation

(2) u(x, t) = S(t)φ(x) +
∫ t

0

S(t− t′)σu|u|p−2(x, t′) dt′.

Then a solution becomes a fixed point in the space of functions determined by
the norms involved in the Strichartz inequalities (see again [16] for an overview).
More refined results in Rd were obtained once it became clear that for generic
initial data φ, the linear solution S(t)φ has a better smoothness than φ itself. This
property, now known as the smoothing effect, was first observed in a weak version
by Kato [21] for the KdV equation, then was presented in its strongest version
in [25] for KdV type equations, and in [15], [24], [40], [48] for the Schrödinger
equation. A companion of the smoothing effect estimate is the maximal function
estimate, in which the maximum in time of the solution is considered [25], [47].
The smoothing effect was definitely the missing tool in order to be able to consider
general Schrödinger equations with nonlinearity involving not just u as in (1), but
also the first derivatives of u, (see [8], [9], [26], [27]). The situation for periodic
initial value problems is very different in view of the fact that Fourier transforms
are actually Fourier series and integration by parts, on which oscillatory integrals
estimates strongly rely, is not available. A decade ago Bourgain [1], using a discrete
analysis based on concepts in combinatorics and number theory, was able to prove

2The curvature of the hypersurface is directly related to the dispersive character of the equation.
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strong a priori estimates for the periodic KdV and Schrödinger linear operators
and solve, also in this case, the initial value problem using a fixed point theorem
in spaces with low regularity.

In his book Bourgain addresses two questions in the realm of well-posedness:
well-posedness for the H1-critical equation in (1), and well-posedness below the
energy norm. To understand the depth of these questions we should introduce two
concepts: conservation laws and scaling. The equation in (1) enjoys two conserva-
tion laws, the L2 norm and the Hamiltonian:∫

|u|2(x, t) dx =
∫
|φ|2(x) dx,(3)

H(u) =
∫

1
2
|∇u|2(x, t)− σ 1

p
|u|p dx = H(φ).(4)

If in (1) we take σ = −1 (defocusing), then combining (3) and (4), one obtains the
uniform bound ‖u(t)‖H1 ≤ C. As we will see below, uniform bounds in Sobolev
norms are very important when one wants to prove well-posedness for data of any
size and on an interval of arbitrarily long time. As for the scaling, it’s easy to
check that if u solves (1), then uλ(x, t) = λ−

2
p−2u(λ−1x, λ−2t) is the solution for

the initial value problem with initial data φλ(x) = λ−
2
p−2φ(λ−1x). It is easy to

check that

(5) ‖φλ‖Ḣs ∼ λ
− 2
p−2 + d

2−s,

where Ḣs is the homogeneous Sobolev space3 of order s. If s > − 2
p−2 + d

2 and
λ � 1, one can then use the rescaled initial value problem to be in the advan-
tageous position of having small initial data; see [7], [46]. As mentioned above,
the nonlinear part of the equation will behave as a “small” perturbation in the
appropriate Sobolev space, and well-posedness can be proved in an arbitrarily large
interval. If one goes back to the original, nonscaled equation, then the result trans-
lates into well-posedness in an interval of time [0, T ] that is inversely proportional
to ‖φ‖Hs ; that is

(6) T ∼ ‖φ‖−αHs ,

for some α > 0. If s = − 2
p−2 + d

2 = sc, we say that Ḣs is a critical Sobolev space for
the problem and clearly the argument above cannot be used. Bourgain considers
the case when p = 2 + 4

d−2 , d = 3, and hence Ḣ1 is the critical Sobolev space. On
the other hand, as recalled above, at least in the defocusing case, we know that
the H1 norm of the solution is uniformly bounded, so it is reasonable to conjecture
global well-posedness in time for the initial value problem. The first part of the
book is dedicated to the proof of this conjecture, under the restriction of radially
symmetric initial data. It is not known whether the result is true once the radial
symmetry assumption is removed.4 The proof that Bourgain presents is conducted
by contradiction and is based on an original induction process on the size of the

3More precisely f ∈ Ḣs if and only if
(∫
|ξ|2s|f̂ |2(ξ) dξ

)1/2
< ∞, where f̂ is the Fourier

transform of f .
4We should point out that in the equivalent problem for the wave equation, the radial symmetry

assumption has been removed [18], and one expects that this could be the case also for the
Schrödinger equation.
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Hamiltonian. The main ingredient of the proof is a concentration mechanism that
involves the gradient of the solution.5

Answering the question of global well-posedness in a positive way opens the doors
to the investigations of new phenomena, scattering being one of these. In general
terms we say that, given a nonlinear dispersive initial value problem that is globally
well-posed in some Sobolev space Hs, scattering occurs if as t tends to infinity, the
nonlinear solution u(x, t) approaches a linear solution in the norm Hs. Clearly as
the regularity required decreases6 the scattering result becomes more complicated
to prove. A fundamental inequality global in time, the Morawetz inequality, plays
a special role in critical situations, like the one described above. Unfortunately
this inequality has a radial symmetry that forces a restriction of the problem to
radial initial data. It is highly desirable to look for other inequalities that, although
weaker, do not present the radial restriction.

Another question that one can address, once the global existence of a solu-
tion u(x, t) is established, is the time asymptotic of the higher Sobolev norms
‖u(t)‖Hs , s � 1. It is interesting to estimate this norm in time because, as s in-
creases, the value of the integral describes how much energy gets moved to high
frequencies during the evolution process.7 The expectation is that if the dispersive
initial value problem is periodic, then one should not expect a bound better than
polynomial in time. If instead one does not impose any boundary condition, the
bound should be independent of time. In the book some partial results are pre-
sented ([2], [3], [41], [42] and the more recent work [10]), but the whole picture of
this phenomena is still far from being completed. A much stronger and in fact sharp
result is proven [4] for the periodic linear Schrödinger equation with a bounded and
smooth real potential V (x, t), in Td. Here the result is that ‖u(t)‖Hs . |t|ε, for any
s ∈ [1,∞] and for any ε > 0. It is conjectured that such a result should also hold
when the periodic boundary conditions are removed, but the proof that Bourgain
presents is not applicable directly in this case, so the problem in Rd is still open.

When one considers questions on global well-posedness it is natural to also ad-
dress the even more complicated questions of blow-up, blow-up rate, continuation
after blow-up time and stability. The book recalls for example the standard result
of blow-up of the energy norm for the focusing cubic Schrödinger equation in two
dimension. This is obtained by using a viriel inequality, which provides the result
in an indirect fashion; see [51], [17]. Also some explicit solutions with critical mass
which blow-up at a fixed time T and with prescribed blow-up points are presented.
These solutions were introduced by Merle [36], [37] and are constructed by using
the groundstate function Q. The precise rate of blow-up on the other hand has
been “described” only using numerical computations; see for example [31]. After
the book was published, Martel and Merle [33], [34], [35], [38] addressed the ques-
tion of blow-up, and related phenomena, for the generalized KdV equation8 in a
much more systematic and direct way. Thanks to their work, at least for this equa-
tion, the blow-up phenomena are now much better understood. In a very recent
work [39] Merle and Raphael proved the optimal conjectured [31] upper bound for

5The basic tool used to identify concentration is a Morawetz-type inequality that will be
mentioned again below.

6That is as s becomes smaller.
7This is one of the questions addressed in weak turbulence theory [52].
8One should say that for this equation a viriel inequality does not lead directly to blow-up.
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blow-up of a solution to the cubic focusing 2D Schrödinger equation9 with negative
Hamiltonian (4).

All the questions and phenomena introduced above are considered in a regime of
smoothness that is at least at the level of the energy norm H1. So one question, to
which a large part of the book is dedicated, is well-posedness for rough initial data,
that is in Hs, for s < 1. We recalled above the critical exponent sc = − 2

p−2 + d
2 .

Even though this is not always the case, (see [32], [28] for counterexamples), one
expects in general that for s > sc, local well-posedness can be proved. For example
if d = 2 and p = 4, local well-posedness is expected for s > 0. This was in fact
proved to be the case [6], [1]. In order to obtain local well-posedness in this low
regime of regularity, one needs to sharpen the classical theorem on restriction of the
Fourier transform and the related Strichartz and maximal function estimates. In
doing so a variety of interesting and difficult problems, which one may view as purely
harmonic analysis questions, need to be considered.10 Once the local well-posedness
is proved also for rough data, the next obvious question to ask is whether the local
result could be iterated to a global one. It was remarked above that conservation
laws are the classical tool to perform the iteration. As an example let’s consider the
cubic defocusing nonlinear Schrödinger equation 11 in R2. As recalled, local well-
posedness can be proved in this case for s > 0. More precisely for any φ ∈ Hs(R2)
there exist T0 ∼ ‖φ‖−αHs (for some α > 0) and a unique solution u(x, t) that belongs
to C([0, T0], Hs). Of course one can repeat the argument at time T0 and advance
further on an interval T1 ∼ ‖u(T0)‖−αHs . Clearly, if ‖u(t)‖Hs grows too fast in time,
this process will never define the solution at an arbitrary time far in the future.
Certainly an appropriate conservation law would give us control for these norms. In
the case we are considering we only have (3) and (4), which together bound the H1

norm, and iteration would give global well-posedness in this space. So the question
remains open for 0 < s < 1, where no conservation laws are available. Bourgain
presents a very general method to attack this problem. He splits the initial data
φ into a small frequency part φ0 and a large frequency part ψ0. Clearly φ0 is as
regular as one wants and has a large norm, and ψ0 is still rough, but with small
rough norms. Then he lets φ0 evolve following the given IVP, and he obtains a
solution u0(t) that lives in the space H1, for all t ∈ [0, δ], δ ∼ ‖φ0‖−αH1 , and for
which a uniform bound is provided. He lets ψ0 evolve with respect to a difference
equation to obtain a solution v0 such that the desired solution u = u0 + v0. He
writes v0(x, t) = S(t)ψ0(x) + w(x, t), where S(t) is the group associated to the
Schrödinger equation and w(x, t) is the nonlinear part of the solution. It is not
hard to see also that v0(t) is defined for all t ∈ [0, δ]. He is now able to iterate. In
the second step he defines the new initial data

ψ1(x) = S(δ)ψ0(x) and φ1(x) = u0(δ, x) + w(δ, x).

The heart of the matter in Bourgain’s argument is in proving that w(δ, ·) ∈ H1,
even though it comes from rough data, and the error ‖w(δ, ·)‖H1 is small. This
allows the iteration to be continued and to obtain global well-posedness for any
φ ∈ Hs, s > 3/5, leaving now the smaller gap s ∈ (0, 3/5). After the book was
published, with J. Colliander, M. Keel, H. Takaoka and T. Tao [14], we introduced

9This is in fact the equation in (1) when σ = 1, p = 4 and d = 2.
10One of the most notorious is the calculation of the dimension of the Kakeya set [5], [49], [50],

[22].
11This is the equation in (1) when σ = −1 and p = 4.
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a new method to extend local well-posedness to global well-posedness. As I will
discuss later, this method can be implemented for a variety of dispersive equations.
Here I will only discuss the procedure for the particular Schrödinger initial value
problem (1), with p = 4, σ = −1 and in R2. Also in our argument we use the
strongest feature of the equation in hand: the conservation of the Hamiltonian.
Clearly if we start with initial data φ ∈ Hs, 0 < s < 3

5 , the solution u(x, t) has
infinite Hamiltonian. We then look at the low frequency part of the solution u by
defining the energy E(u(t)) = H(Iu(t)), where I is the multiplier operator given
by a smooth multiplier that satisfies

(7) m(ξ) =
{

1, |ξ| < 1/2N
N1−s|ξ|s−1 |ξ| ≥ N ;

in other words, Îf(ξ) = m(ξ)f̂(ξ). Clearly H(Iu(t)) ∼ ‖u(t)‖Hs . Because the
definition of E(u(t)) depends on the Hamiltonian and this is conserved, we expect
that E(u(t)) is not “too far” from being conserved itself. By using the equation in
the appropriate way and the fact that I commutes with derivatives, we find that
in a fixed interval [0, δ]

(8) |E(u(t))− E(φ)| . N−3/4.

The decay in the parameter N justifies the name of almost conservation law that
we give to E(u(t)). The estimate (8) can be used to extend global well-posedness
for all initial data in Hs, s > 4/7. The method described above, and in particular a
refinement of it that improves the decay in (8), can be used also to investigate global
well-posedness for KdV type equation [13] and one dimensional Schrödinger equa-
tions with derivatives [11], [12]. In both cases we proved that local well-posedness
and global well-posedness coincide. We also use a similar procedure to investigate
scattering and stability below the energy norm.

As Bourgain explains in his book, one of the reasons why one may be interested
in proving the existence of a global flow for rough data is that some of these rough
Sobolev spaces present a well known geometric structure associated with the flow:
they are symplectic spaces of infinite dimension. An example is the periodic, cubic
defocusing Schrödinger equation in L2(T). In this space the equation has a global
flow [1], and one may investigate whether certain classical questions in finite dimen-
sion symplectic spaces still hold in this infinite dimensional setting. An example of
these questions is the validity of Gromov’s symplectic non-squeezing theorem [19].
By extending earlier work of Kuksin [29], [30], Bourgain proved this theorem for
the Schrödinger flow in L2(T). His method consists in projecting the equation into
the finite dimensional space of the first N Fourier modes, using the well established
finite dimensional theory here, and then taking the limit as N → ∞. Another
example of a symplectic space is H−1/2(T) with the periodic KdV equation. With
Colliander, Keel, Takaoka and Tao, we recently proved, using almost conservation
laws, that indeed this flow is global [13]. Unfortunately Bourgain’s approach, of
projecting into the finite dimensional space of the first N modes, does not work
in the KdV context because of some “unpleasant” interactions of large frequencies
that “migrate” to small frequencies.

Two more topics are presented in this book as subjects to investigate once the
flow of the equation has been proved to be global. Both of them are again gen-
eralizations in spaces of infinite dimension of classical concepts in finite dimension
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Hamiltonian settings.12 The first topic is the definition of a Gibbs measure; the
second is the extension of the KAM theory to these global PDE flows. Bourgain
presents a variety of results, many of them providing a complete theory when the
initial value problem is defined on the circle T, but almost completely open in higher
dimensions. It is clear that also in this case the theory is not even nearly settled,
and many questions have just started to be considered.

I highly recommend this book to all those people who want to learn about the
recent advances in the theory of dispersive equations (not only the Schrödinger
equation), and to all those researchers in analysis and PDE that want to focus
their effort on problems that are at the same time interesting and challenging. The
number of unresolved questions posed in this book is quite large, so in a way I
consider this work a gold mine of open problems. Bourgain’s style is often a bit too
concise, but it is also true that the goal of the book was to summarize in one single
volume many different and new results that in many cases had already appeared in
published papers.
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