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The book under review gives a comprehensive account of the Rosser-Iwaniec
method, the most important development in the construction of number sieves since
the advent in 1947 of Selberg’s λ-method. Sieve literature has grown prodigiously
since the publication of [HR], and Dr. Greaves has had to make some difficult deci-
sions on what to include and what to omit. On the whole his choices have been wise;
students and experts alike will have much to learn from his careful presentation. If
the book does not always make for easy reading, that is due largely to the nature
of the subject: not only does sieve architecture rest on complicated combinatorial
foundations, but these culminate nowadays in none too easy linear differential delay
boundary value problems and also link up with results and techniques from modern
analytic number theory.

We begin with a brief description of sieve methods by setting the stage: Let P
be a finite set of primes—usually this is an infinite, increasing sequence of primes
truncated at some number z > 2—and refer to P as a ‘sieve’. Let P denote the
product of all the primes in P . In Selberg’s terminology, P is said to ‘sift out’ an
integer n if n is divisible by some prime p in P . Then, writing (n, P ) for the highest
common factor of n and P , P sifts out n if and only if (n, P ) > 1; by the same
token, the indicator function of all integers n that are not sifted out by P is

(1)
∑

d|(n,P )

µ(d) =

{
1 when (n, P ) = 1
0 otherwise.

(Here the Moebius function µ(d) is 1 at d = 1, (−1)ν when d is squarefree and the
product of ν primes, and 0 otherwise. Also, d | m means that d is a factor of m.)

Next, let A be a finite integer sequence and suppose it is such that the ‘probabil-
ity’ that a prime p from P divides an element a of A is ρ(p)/p, where 0 ≤ ρ(p) < p
and ρ(p) = 0 when p is not in P . Writing Ad = {a ∈ A : d | a} and ρ(d) =

∏
p|d
ρ(p),

we make this a little more precise by postulating the existence of an approximation
X to the cardinality |A| of A such that the quantities

rA(d) := |Ad| −
ρ(d)
d
X, d | P,

are small, perhaps only on average (of some kind) over the divisors d of P not
exceeding some parameter D. (The reader might find it helpful to think of A as
the sequence of values taken on an interval of length X by an irreducible polynomial
h(•) with integer coefficients and having no fixed prime divisors; in this case ρ(p)
is the number of mod p incongruent solutions of the congruence h(x) ≡ 0 mod p.)

The simplest problem in any sieve method is to estimate as accurately as possible
the number S(A, P ) of elements in A that are not sifted out by P . From what has
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been said,

S(A, P ) = |{a ∈ A : (a, P ) = 1}| =
∑
a∈A

( ∑
d|(a,P )

µ(d)
)

=
∑
d|P

µ(d)|Ad| = X
∑
d|P

µ(d)
ρ(d)
d

+
∑
d|P

µ(d)rA(d)

= XV (P ) +R(2)

say, where
V (P ) =

∑
d|P

µ(d)ρ(d)/d =
∏
p∈P

(1− ρ(p)/p).

This beguiling result, often referred to as the Eratosthenes-Legendre formula, ap-
pears at first sight to be the end of the story; actually, it is barely the beginning. To
see this, consider the classical case first studied by Eratosthenes in the third century
BC and reformulated two millennia later by Legendre, of A = {n ∈ N : 1 ≤ n ≤ X}
and P = {p : p ≤

√
X}. Here |Ad| = xX/dy = X/d+ (xX/dy−X/d), so that

π(X)− π(
√
X) + 1 = S(A, P ) = X

∏
p≤
√
X

(
1− 1

p

)
+
∑
d|P

µ(d)(xX/dy−X/d),

where π(y) denotes, as usual, the number of primes not exceeding y. The leading
term on the right is not asymptotic to X/ logX as X → ∞, as one might have
hoped from knowledge of the Prime Number Theorem, but to a quantity larger
by a constant factor. Thus the ‘remainder’ sum R is actually of the same order
of magnitude as the leading term. Indeed, a little reflection shows the formula of
Eratasthenes-Legendre to be a direct application of the inclusion-exclusion princi-
ple, which is known to be of practical use only when the number of ‘properties’ to
be excluded is very small—here this is the number π(

√
X) of primes not exceeding√

X, and it is much too large.
In the literature one finds mostly the need for three kinds of estimates of S(A, P ):

(I) S(A, P )� XV (P );

this, the simplest and also the most frequent application, occurs in auxiliary situa-
tions, as when one wants to show that some subset consisting of integers that have
no small prime factors is of a relatively negligible size.

(II) S(A, P ) ∼ XV (P );

such an asymptotic result, consonant with what naive probabilistic reasoning sug-
gests, is valid only when P is very sparse or when (log |P|)/ logX → 0 as X →∞.
Nevertheless, it too has many applications and goes under the name of ‘a funda-
mental lemma’, coined long ago by Kubilius in connection with his study of the
distribution of values of additive arithmetic functions.

(III) S(A, P ) > 0 or S(A, P )→∞ as X →∞;

such statements assert that A contains an element, or many elements, having no
prime factors from P and, therefore, subject to a proper choice of P , only very few
large ones. Most of the approximations we have to the classical conjectures of prime
number theory come under this heading, although for the best approximations
currently known one needs additional optimising procedures. For example, in the
particular case to which we referred earlier, it is known that if g is the degree of
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h(•), then h(n) is infinitely often an ‘almost-prime’ Pg+1—a number having at most
g + 1 prime factors [R].

So, to devise a practical sieve method one looks for an effective approximation
to the indicator function (1). Let ∑

d|(n,P )

χ(d)µ(d)

be such an approximation, where χ(1) = 1, but otherwise the values taken by the
‘modifying’ factor χ(•), all real, remain to be chosen. Writing q(d) for the least
prime factor of an integer d > 1 and q(1) =∞, associate with χ the ‘complementary’
function χ̄(•) given by

χ̄(1) = 0, χ̄(d) = χ(d/q(d))− χ(d) (d > 1)

(there is a typo in this statement on p. 76). To link χ and χ̄ we have

The Fundamental Sieve Identity. Let ψ(•) be any arithmetic function and n a
squarefree natural number. Then∑

d|n
µ(d)ψ(d) =

∑
d|n

µ(d)ψ(d)χ(d) +
∑
d|n

µ(d)χ̄(d)
∑
t|n

Q(t)<q(d)

µ(t)ψ(dt),

where Q(t) denotes the largest prime factor of t > 1 and Q(1) = 1. In particular,
when ψ is multiplicative we have∑

d|n
µ(d)ψ(d) =

∑
d|n

µ(d)ψ(d)χ(d) +
∑
d|n

µ(d)ψ(d)χ̄(d)
∏
p|n

p<q(d)

(1− ψ(p)),

and hence, when ψ(•) = 1 identically,

(3)
∑
d|n

µ(d) =
∑
d|n

µ(d)χ(d) +
∑
d|n

q(d)=q(n)

µ(d)χ̄(d).

Let ν(d) denote the number of prime factors of a squarefree number d. Brun’s
first choice of χ was

χ(d) =

{
1, ν(d) ≤ k
0 otherwise,

where k is a positive integer. Here χ̄(d) = 1 if and only if ν(d) = k + 1, so that,
by (3)

(3′)
∑
d|n

µ(d) =
∑
d|n

ν(d)≤k

µ(d) + (−1)k+1
∑

d|n,ν(d)=k+1
q(d)=q(n)

1;

in particular, if k is even and ` odd, we have

(4)
∑
d|n

ν(d)≤`

µ(d) ≤
∑
d|n

µ(d) ≤
∑
d|n

ν(d)≤k

µ(d).

(In probability theory, these are known as Bonferroni’s inequalities.) Brun used
the right-hand inequality, with a suitable choice of k, to obtain the first non-trivial
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piece of information about prime twins, namely that∑
p

p+2=p′

1/p <∞;

he accomplished this by estimating π2(x) := |{p ≤ x : p+ 2 = p′}| from above, but
his estimate, though good enough for this purpose, contained an unwanted factor
(log log x)2. A few years ago Hooley ([H1]; see also [FH]) showed how to remove
this blemish by what seems with hindsight to have been the natural generalization
of Brun’s so-called ‘pure’ sieve: Let

P =
r⋃
j=1

Pj (r ≥ 2), Pj =
∏
p∈Pj

p,

be any partition of P (so that Pi ∩ Pj = φ when i 6= j). Then by the right-hand
inequality in (4),

(5)
∑

d|(a,P )

µ(d) =
r∏
j=1

∑
d|(a,Pj)

µ(d) ≤
r∏
j=1

∑
d|(a,Pj)
ν(d)≤kj

µ(d)

for any choice of r even integers kj . Perhaps Brun did not miss this idea but did
not follow it up because it seemed not to possess a natural analogue of the left-
hand inequality in (4); instead he devised a more complicated set of constraints
on the prime decompositions of the divisors dj of Pj , also in terms of the counting
numbers ν(dj), that, while it lacks the multiplicative structure of (5), does possess
a symmetric lower counterpart, as in (4). This, the famous Brun Sieve method
held the stage for more than thirty years and, after a slow start, played a role in
many interesting investigations. It is now, as Greaves remarks, largely of historical
interest (for a full account see e.g. [HR] or [S]). What Greaves does instead is to
present in Chapter 3 a preliminary version of the Rosser-Iwaniec method that is
weaker but simpler and constitutes a good introduction to it. He gives a reference
to Hooley’s method but no details. There is, in fact, a lower counterpart to (5)
that rests on the almost trivial inequalities

y1 · · · yr −
r∑
`=1

(y` − x`)
r∏
j=1
j 6=`

yj ≤ x1 · · ·xr ≤ y1 · · · yr

whenever 0 ≤ xj ≤ yj (j = 1, . . . , r);

just take

xj =
∑

d|(a,Pj)
µ(d) and yj =

∑
d|(a,Pj)
ν(d)≤kj

µ(d) (j = 1, . . . , r)

and apply (3′) to the terms y` − x`. This, the Brun-Hooley method, is technically
much simpler than Brun’s, and indeed than any other known method—which, as
Hooley has shown [H2], can be important in applications—and it is about as ac-
curate as Brun’s. It is a versatile and accessible tool that will see much use in the
future and could simplify accounts of many past applications.

For most practical purposes Brun’s method was superceded by Selberg’s powerful
and elegant λ-method, that saw the light of day in a short note dated 1947 and
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rests on the daringly simple observation that∑
d|n

µ(d) ≤
(∑
d|n

λd

)2

for any choice of real numbers λd so long as λ1 = 1. There are now many books that
give fine presentations of Selberg’s method, but Greaves’ account of it in Chapters 2
and 7 contains some interesting and original refinements.

The above inequality leads to an upper estimate of S(A, P ) only, but here too
there is a readily available lower counterpart. To describe it we first make the slight
change of notation mentioned earlier—from now on, and for the rest of this review,
think of P as an infinite increasing sequence of primes and write P (z) =

∏
p∈P,p<z

p.

Now we go back to (3) and make the apparantly trivial choice χ(d) = 1 at d = 1
and χ(d) = 0 otherwise; then χ̄(d) = 1 when d is prime and is otherwise also 0, and
(3) leads directly to Buchstab’s identity

(6) S(A, P (z)) = |A| −
∑
p∈P
p<z

S(Ap, P (p)).

Obviously, applying upper bounds in the sum on the right will lead to a lower
bound for S(A, P (z)). There are a good many technical difficulties on the way, but
these were successfully overcome in an important paper [AO] in 1964 by Ankeny
and Onishi, who gave there, among other things, a first general lower bound method
based on Selberg’s sieve method and (6).

Hard upon the heels of [AO] there appeared the paper [JR] of Jurkat and Richert
in which Selberg’s sieve is combined with an ingeniously chosen infinite iteration
of (6) to obtain upper and lower estimates of S(A, P (z)) for all problems in which
ρ(p) is, in a very weak sense, about equal to 1 on average. (This is the case in the
problem involving the irreducible polynomial h(·) cited earlier, where ρ(p) is 1 on
average by the prime ideal theorem.) For this class of ‘linear’ problems a pair of
important examples of Selberg (see Chapter 4.5.1) show the estimates of [JR] to
be best possible, but it should be said that [AO] is only very slightly weaker than
[JR] in the case of linear problems. A full account of the methods of [AO] and [JR],
with many applications, are to be found in [HR].

But [JR] gains added importance from the fact that it inspired Iwaniec, then
a young research worker in Warsaw, to develop an alternative procedure, slightly
sharper and also more flexible than that in [JR], and it is a careful, accurate and
systematic account of Iwaniec’s method that is the principal achievement of this
treatise. It would transpire later that Rosser had discovered much the same method
much earlier but had published no details—I know of only two research announce-
ments, in volumes 43 (p. 173) and 47 (p. 383) of the AMS Bulletin (the latter jointly
with W. J. Harrington), and Le Veque quoted a ‘fundamental lemma’ version in one
of his early papers. So one speaks nowadays of the Rosser-Iwaniec sieve (R-I, for
short), but it is Iwaniec who has developed, refined and applied it over the years,
alone or in partnership with others, in a veritable stream of important papers.

To sketch the combinatorial basis of the Rosser-Iwaniec method we go back to (3)
and look for a choice of χ that is superior to Brun’s and incorporates the outcome
of the iterations of (6) in [JR]—Davenport (and probably others, too) remarked
once in conversation that whenever iteration works there is usually at bottom a
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better approach. Substituting from (3) in (2) we have

S(A, P (z)) =
∑
a∈A

( ∑
d|(a,P (z))

µ(d)χ(d) +
∑

d|(a,P (z))
q(d)=q((a,P (z)))

µ(d)χ̄(d)
)

=
∑
d|P (z)

µ(d)χ(d)|Ad|+
∑
d|P (z)

µ(d)χ̄(d)S(Ad, P (q(d))

= S1 + S2,(7)

say. Here

S1 = X
∑
d|P (z)

µ(d)χ(d)ρ(d)/d +
∑
d|P (z)

µ(d)χ(d)rA(d)

= X

(
V (P (z))−

∑
d|P (z)

µ(d)χ̄(d)
ρ(d)
d
V (P (q(d))

)
+
∑
d|P (z)

µ(d)χ(d)rA(d)(8)

by the Fundamental Sieve Identity with ψ(d) = ρ(d)/d; and

(9) S2 =
∑
d|P (z)
µ(d)=1

χ̄(d)S(Ad, P (q(d)))−
∑
d|P (z)
µ(d)=−1

χ̄(d)S(Ad, P (q(d))) = S21 − S22 .

We suppose from now on that χ(•) assumes only the values 0 and 1 and is divisor-
closed in the sense that when χ(d) = 1 and t | d, then also χ(t) = 1. It follows at
once that χ̄(d) also takes only the values 0 and 1, so that χ and χ̄ may be viewed
as indicator functions of disjoint subsets of divisors of P (z). Now we are ready:
suppose we want to construct a χ = χ+ that leads to the upper bound

(10) S(A, P (z)) ≤ S+
1 ,

where S+
1 is the sum S1 in (8) with χ+ in place of χ (with a similar interpretation

of S+
2 in (9)). Such a bound holds if (see (7)) S+

2 ≤ 0. By (9), S+
2 ≤ S+

21 anyway,
so if we require of χ+ that

χ̄+(d) = 0 when µ(d) = 1,

then indeed (10) does hold. (We shall come back to this apparently drastic condition
later.) Next, we have simply dropped S+

22 because each term in that sum is non-
negative, but we want χ̄+(d) when µ(d) = −1 to be such that little is lost by leaving
out each S(Ad, P (q(d))) when µ(d) = −1. Finally, if S+

1 is to be dominated by the
first expression on the right of (8) (with χ = χ+, of course), then χ+(d) needs to
be 0 when d is too large, say χ+(d) = 0 when d | P (z) and d ≥ D; the parameter
D is to be such that the second expression on the right of (8) is an error term. To
express these three conditions in a more tangible form we borrow from the insights
of R-I and give χ a quasi-multiplicative structure: Let d > 1 and squarefree have
canonical prime decomposition

(11) d = p1p2 · · · pr, p1 > p2 > · · · > pr = q(d),

and suppose that1

χ(d) = η(p1)η(p1p2) · · · η(p1 · · · pr)

1Greaves does not use this notation, but his B-notation is equivalent.
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where η(•) is an arithmetical function to be determined that takes only the values
0 and 1. We deduce at once that

χ̄(d) = χ(d/q(d))(1 − η(d)).

In the case of χ+ it is evident that χ̄+(d) = 0 when µ(d) = 1 if we choose η+(t) = 1
whenever µ(t) = 1, that is, when ν(t) is even; then

χ+(d) = η+(p1)η+(p1p2p3) · · · .

To find η+(t) when µ(t) = −1, we observe that χ̄+(d) can take the value 1 only if
η+(d) = 0; therefore we shall require that η+(t) = 0 when χ̄+(t) = 1 and µ(t) = −1.
From what we said earlier, when µ(t) = −1 and χ̄+(t) = 1 we want the best lower
estimate of S(At, P (q(t))) to be small. Now one learns from [JR] and, to a lesser
extent, from [AO] that one may expect the lower bound for S(A, P (z)) to take
the form

(12) S(A, P (z)) ≥ XV (P (z)){f(u) + o(1)}, u =
logD
log z

,

where f(u) is a continuous, monotone increasing function that is non-negative and
approaches 1 as u→∞ at an exponential rate or even faster. In the important case
of linear problems (and for a large class of other problems) there exists a number
β ≥ 1 such that f(u) = 0 when u ≤ β, that is when z ≥ D1/β . Thus, when we turn
to S(At, P (q(t))) and replace z by q(t) and D by D/t (because of the summation
over t) we see that if

log(D/t)
log q(t)

≤ β, or q(t) ≥ (D/t)1/β ,

then indeed the best available lower bound for S(At, P (q(t))) is essentially negligi-
ble. Thus we are led to define

η+(t) =

{
1, q(t) < (D/t)1/β

0, q(t) ≥ (D/t)1/β
when µ(t) = −1,

and we now have χ+ fully specified, apart from the value of β, and satisfying the
conditions set out for it earlier; when d | P (z) and is as in (11), χ+(d) = 1 if and
only if the x1

2 (r − 1)y inequalities

pβ+1
2j+1p2jp2j−1 · · · p2p1 < D, j = 0, 1, . . . , x1

2
(r − 1)y

are satisfied. Note in particular that χ+(d) = 0 when d ≥ D. To summarize, we
have by (10) and (8) that

(13) S(A, P (z)) ≤ X{V (P (z)) + T+(P (z))}+
∑
d|P (z)
d<D

µ(d)χ+(d)rA(d)

where

T+(P (z)) =
∑

d|P (z),µ(d)=−1

χ̄+(d)
ρ(d)
d
V (P (q(d))).
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The expression

V (P (z)) + T+(P (z))

= V (P (z))
{

1 +
∑
d|P (z)
µ(d)=−1

χ̄+(d)
ρ(d)
d

∏
q(d)≤p<z

(
1− ρ(p)

p

)−1}
,(14)

and the coefficient of V (P (z)) on the right, obviously at least as large is 1, is closely
approximable by a continuous function F (u) (with u = (logD)/ log z as before) that
decreases to 1 monotonically as u→∞ at a rate that is exponential or faster. Thus,
as a comparison to (12), we have (essentially) that

(15) S(A, P (z)) ≤ XV (P (z)){F (u) + o(1)}.
When u is very large—in other words, when z is small—(12) and (15) lead to
asymptotics for S(A, P (z)) of the fundamental lemma type. (We have to add that
the simplicity of (12) and (15) is deceptive; we have assumed implicitly that there
has been enough information about the averages of rA(d) over d | P (z) and d < D
to make them genuine error terms.)

To identify the functions F and f , and to determine the number β, requires the
introduction of a parameter κ > 0 associated with the average behavior of ρ(p)
over the primes of P . Following Iwaniec, κ is a sifting density for ρ if there exists
a constant L = L(κ) > 1 such that

(16)
∏

w≤p<z

(
1− ρ(p)

p

)−1

≤
(

log z
logw

)κ(
1 +

L

logw

)
, 2 ≤ w < z.

Clearly κ is not uniquely defined here—if κ is admissible in (16), so is any number
larger than κ. Nevertheless, in any given sieve problem the optimal κ is usually
known; for example, in all linear problems κ = 1. (This is also a good place
to remark that the combinatorial analysis I have sketched above is correct in all
particulars for problems with density κ ≥ 1

2 .) Chapter 4 shows that F and f have
to satisfy a certain simultaneous linear differential-delay boundary value problem
(see Chapter 4.2.1) involving κ and β = βκ that is soluble under the several stated
conditions on F and f only if β is the unique largest positive solution of an equation
that is algebraic when 2κ is an integer and otherwise is transcendental.

The Rossen-Iwaniec sieve method is remarkable in several ways: it effects a
successful marriage between a complicated combinatorial schema and some quite
hard analysis, under no more than the weak, one-sided condition (16); it is valid
for all densities κ > 0 (actually for κ = 0 too) and is best possible not only for
κ = 1 (as is [JR]) but also for κ = 1

2 ; and the remainder sums have so flexible a
structure that, in the linear case, they are accessible to estimation by exponential
sum procedures that allow one to sift beyond the natural limit (see Chapter 6).

It transpires, however, that for problems with κ beyond 1, R-I is weaker even
than [AO]—as Iwaniec himself has remarked, this illustrates the power of Selberg’s
method. In fact, a hybrid of Selberg’s method and R-I exists (see [DHR] and the
papers cited there) that improves on [AO], especially for smaller κ—say κ between
1 and 10. This is mentioned in the book but not described in detail (see Chapter 7).
It is easy to point out at least where the improvement is made: in (9) interpreted
for S+

2 , S+
21 was disposed of by choosing χ̄+(d) = 0 when µ(d) = 1, whereas

we can apply Selberg’s sieve to at least some of the terms in S+
21. The resulting
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combinatorics are of the R-I kind and not much more complicated, but the boundary
value problem in which they culminate becomes considerably harder, except when
2κ is an integer. Concrete examples like Selberg’s when κ = 1 and Iwaniec’s when
κ = 1

2 are not known and greatly to be desired. We have β1/2 = 1 and β1 = 2, and
Selberg has given a convincing argument that suggests that βκ ∼ 2κ as κ→∞ (see
[S] and Chapter 7); existing methods yield only βκ ∼ 2.44 . . . κ, so probably much
remains to be done. It may be that a radically different combinatorial approach is
needed when κ > 1. The so-called vector sieve of Brüdern and Fouvry [BF1], [BF2]
is an interesting step in this direction.

What about applications? Where problems in categories I and II are concerned,
Brun’s or the Brun-Hooley method usually suffices; it is in the context of such
applications that Erdős remarked in 1965 that “Brun’s method is perhaps our must
powerful elementary tool in number theory.” Numerous standard applications are
presented systematically in [HR], and Greaves has not attempted to repeat them in
this book. It is instructive to look at the many papers of Erdős where the sieve is
used; one sees that while the sieve method that is applied may be simple, the way in
which it is introduced is often highly insightful. To illustrate this remark, recall the
classical result of Schnirelmann that combines his theory of the addition of integer
sequences with Brun’s sieve to prove that there exists an absolute constant k such
that every natural number greater than 1 is the sum of at most k primes (from
much more recent work, k ≤ 17 or 18 using only elementary techniques).

In problems of category III one uses R-I for good results, but invariably one
does better when combining it with other ideas, some of these set out expertly
in Chapter 5. For example, the lower bound sieve alone applied to the numbers
{p+ 2 : p ≤ x} shows, when the Bombieri-Vinogradov theorem is used to estimate
remainder sums, that p + 2 is infinitely often a P4. A few years ago Professor
Vaughan pointed out to me that the primes p for which p + 2 is the product
of exactly four primes make a negligible contribution, so that actually p + 2 is
infinitely often a P3. But years earlier J. R. Chen had used the lowerbound sieve in
combination with a certain weighting procedure and with an idea like Vaughan’s
(that had actually inspired Vaughan) to prove that p+ 2 is infinitely often a P2.

A weighted sieve method seems, by setting out to achieve less, actually to achieve
more. The idea was pioneered by P. Kuhn in 1941; weighting procedures can become
technically very complicated, but Kuhn’s original method was rather simple: Let A
be the sequence to be sifted by some truncation of P , and suppose that a ≤ Dg for
every a in A. Sift out from A all those a’s that have small prime factors from P , say
prime factors p ≤ D1/s where s is a large positive number, and then eliminate the
negligibly small number of the remaining a’s that are not squarefree with respect
to larger primes. Now form the sum

M =
∑′

a∈A
(a,P (D1/s))=1

m(a),

where the dash signifies that no a counted in the sum is divisible by the square of
a prime exceeding D1/s, and the weight m(a) is constructed to be positive only if
a has very few prime factors from P beyond D1/s. Kuhn’s simple choice of m(a)
illustrates the weighting procedure well. Let t be a number such that 1 < t < s
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and b a positive integer, and let

m(a) = 1− 1
b+ 1

∑
p|a

p<D1/t

1.

On the one hand, it is easy to see that M can be expressed in terms of S-functions,
and on the other, showing that M is positive for some choice of parameters b, s and
t implies that A contains elements a with m(a) > 0, and for these, a has at most b
prime divisors between D1/s and D1/t. Hence, for each such a,

Dg ≥ a ≥ Db/s+(ν(a)−b)/t

or
ν(a) ≤ gt− (t/s− 1)b.

Chen used Kuhn’s method as part of his proof that p + 2 = P2 infinitely often,
and Richert [R] used the slightly more sophisticated logarithmic weights from [AO]
to obtain his result about almost-prime values of irreducible polynomials (quoted
earlier). Chapter 5 describes several much more complicated weighted sieves, some
due to Greaves himself, which hold the promise of improving many known results.
Selberg constructed another highly ingenious weighted sieve many years ago that
is described in [S] and has been generalized elegantly in [H-B1] to yield novel infor-
mation.

Sieve methods and sieve ideas are now well-established in the arsenal of number
theory. The methods are very general, and this seemed at one time to detract from
their efficacy in tackling special problems, but they have combined so well with
other methods that this generality need no longer be viewed as a handicap. One
has only to think of the role they have played in narrowing the gaps in which primes
and almost-primes occur; or in Iwaniec’s proof [I] that n2 + 1 = P2 infinitely often,
which uses Linnik’s dispersion method; or in the recent spectacular diophantine
results of Friedlander and Iwaniec [FI] showing that infinitely many primes p have
representation p = m2 + n4, and of Heath-Brown [H-B2] that p = m3 + 2n3 for
infinitely many primes. An application that has been eclipsed by Wiles’ proof of
FLT but still deserves honorable mention in that context because of its (relative)
simplicity is the proof of the first case of FLT for infinitely many prime exponents
by Adelman and Heath-Brown based on a sieve theorem of Fouvry (see [Ri] for a
fine account). There is a host of other remarkable applications, some of which are
mentioned and listed in the bibliography.

As for sieve ideas, they too abound in current literature. One might describe
the use of the generalized von Mangoldt’s function Λk(•) as a ‘local’ sieve, another
way of isolating primes and almost-primes. As illustrations we have Selberg’s fa-
mous formula that led to an elementary proof of the Prime Number Theorem, or
of Vaughan’s identity that is so effective in dealing with exponential sums over
prime arguments, or Bombieri’s ‘asymptotic’ sieve. Then there is the ‘enveloping’
sieve of Hooley (Greaves’ teacher) that has an important role in his classical “Ap-
plications of sieve methods to the theory of numbers” that might well have been
cited in Greaves’ bibliography, but wasn’t. There is the use of smooth (‘friable’)
numbers—numbers having only small prime factors—which has revolutionised work
on Waring’s problem in the many papers of Vaughan and Wooley. And there is the
‘large’ sieve of Linnik, Renyi and Roth that, in the hands of Bombieri, Montgomery,
Huxley and others has had a profound influence on analytic techniques in number
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theory. Although the large sieve is not obviously a device of the kind we have
been describing, Montgomery, in one of his earliest papers, used its arithmetical
formulation to derive an upper bound for sifting an interval by not just one, but
several, residue classes modp for each p of a truncated sieve P that has the form
characteristic of Selberg’s method. Finally, I mention a curious recent use of a sieve
[FK] where almost-primes that are not primes play a crucial role.

The notion of ‘sifting’—of isolating and counting one kind of sequence as a
sub-sequence of another—of primes or square-free numbers in intervals and/or in
arithmetical progressions, or of arithmetical progressions among the primes, is now
so common an occurrence in the higher arithmetic that it has come to stay. I hope
that the study of Dr. Greaves’ book will inspire the next generation of sifters and
that its reception will encourage him to produce a second volume more directed
towards applications, which are after all the objectives of sieve methods.

Addendum. Dr. Greaves has informed me that condition (2.2) in the statement
of Theorem 2 on p. 55 needs to be strengthened to condition (2.1) on p. 265 for
the result to remain true. He plans to post a list of corrigenda on his university
web-page in due course.
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