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Three topics in the harmonic analysis on Euclidean spaces R™ are:

e Fourier transform and Plancherel Theorem
e Paley-Wiener Theorem
e Heat kernel techniques and Segal-Bargmann transform

When we try to transfer these three concepts to a “curved manifold” M, the
situation becomes instantly very complicated. Let us look for an appropriate class
of M’s for which we can expect satisfactory answers.

We need the requirement to measure distances, so M should be Riemannian.
In order to have a reasonable theory of selfadjoint operators on M we also need
completeness. But still the class of complete Riemannian manifolds is far too big
for our purpose. Let us assume that M “looks everywhere the same”; i.e., M allows
a transitive action by a Lie group G of isometries. Hence

M ~G/K

with K the stabilizer of a fixed point my € M. Notice that K is a compact subgroup
of G. With the additional requirement that K is a symmetric subgroup, i.e., the
fixed point set of an involution 6 on G, we finally arrive where we want to be:
M = G/K is a Riemannian symmetric space.

Every Riemannian symmetric space M allows a unique decomposition

M =M, x M, x M,

with M., M. and M,, Riemannian symmetric spaces of the following types: M,
is a flat Euclidean space, M. is compact and M, is non-compact (and nega-
tively curved). Our concern here is with Riemannian symmetric spaces of the
non-compact type. Let us mention some examples:

Example 1. The upper half plane H = {z € C : Imz > 0} equipped with the
Poincaré metric y%(da:Q + dy?). The special linear group G' = SI(2,R) acts, via
Mobius transformations, as the group of orientation preserving isometries of H.
The stabilizer of i € H is K = SO(2,R), and K is the fixed point group of the
Cartan involution 6(g) = (¢*) ! on G. Thus H ~ G/K is a Riemannian symmetric
space of the non-compact type. Nowadays one considers Riemannian symmetric
spaces of the non-compact type as appropriate generalizations of the upper half
plane: For example the theory of automorphic functions on H was extended to all
Riemannian symmetric spaces of the non-compact type.

Example 2. Let M’ = Symm(n,R)" be the convex cone of all positive definite
symmetric matrices. Write V' = Symm(n,R) for the surrounding vector space of
M’ and identify all tangent spaces T,,, M’ with V. Then the prescription

g (u,v) = tr(z™tuz o) (x € M")(u,v e T,M =V)
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defines a complete Riemannian metric on M’. The group G’ = Gl(n,R) acts
transitively and isometrically on M’ via M’ > z — gxgt € M’, g € G'. The
isotropy subgroup of the identity matrix 1 is K’ = Q(n,R). Thus the mapping

G//Kl_)M/7 gKl’_)ggt

identifies M’ ~ G’ /K’ as a Riemannian symmetric space. Finally M’ decomposes
as M' = M x Rt with M being the section of M’ consisting of all matrices with
determinant one. With G = Sl(n,R) and K = SO(n,R) it is now clear that
M ~ G/K is a Riemannian symmetric space of the non-compact type. Let us
mention that M is universal in the sense that every Riemannian symmetric space
of the non-compact type can be embedded isometrically into M.

The harmonic analysis on this particular M is the subject proper of the book
of Jorgenson and Lang and will follow us throughout the review. Let us finish
the discussion of this example by mentioning various choices of coordinates on M.
Define subgroups A and N of G by

1 x %
n
A= {diag(as, ..., an) 1 a; >0, [Jai=1}, N={ S
=1 1

By a result of Gauss every positive definite matrix X can be written uniquely as
X = UU! with U an upper triangular matrix with positive entries on the diagonal.
Thus the following map, called the Twasawa decomposition, is a diffeomorphism:

(1) N x A— M, (n,a)— na(na)".

By the spectral theorem every positive definite matrix can be diagonalized by
an orthogonal transformation. Hence the following mapping, called the polar de-
composition, is onto:

(2) KxA—M, (ka)— kak'.

This choice of coordinates deviates only little from being injective as the generic
fiber is isomorphic to a finite group. Write W for the Weyl group of M, which in
this case is S;,, the permutation group of n letters. The Weyl group W acts on
A by permuting the diagonal entries. Then, if we write C°° (M) for the space
of smooth K-invariant functions on M and C*(A)"Y for the smooth W-invariant
functions on A, the polar decomposition (2) gives us an identification

(3) C®(M)E ~ =)W .

For the rest of this article we let M = G/K be a Riemannian symmetric space
of the non-compact type. When necessary we will restrict ourselves to the specific
example Sl(n,R)/SO(n,R).

1. FOURIER-TRANSFORM AND PLANCHEREL THEOREM

Let us first recall the theory on the real line R. Write S(R) for the Schwartz
space on R, i.e., the space of all rapidly decaying smooth functions. Then the
Fourier-transform

F:S(R) — SR); F(f)(€) = / 27 f(1) da

R
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is an isomorphism, and we have

[fllz = I1FNll2 (f € S(R)) .

The latter means that F extends to an isometry on the Hilbert space L2(R). Finally,
we have the Inversion Formula

FF(f)(=z) = f(z) .

One way of transferring the theory of Fourier transformation to Riemannian
symmetric spaces M goes through answering the following two questions: 1. How
can we define an appropriate Schwartz space S(M) on M? 2. What is the appro-
priate replacement of the exponentials e¢(x) = €2™%% which are used to define the
Fourier transform?

We do not want to go into the technical aspects of the definition of S(M) and
focus instead on the generalization of the exponentials e¢(x) and the definition of
the Fourier transform on M.

The exponentials are eigenfunctions of the Laplace operator dd—;. So it is reason-
able to replace the exponentials by eigenfunctions of the Laplace-Beltrami operator
A on M. Here one encounters the first difficulty: The eigenspaces of A are always
infinite dimensional, whereas for a generalization in the flavour of the real line we
need one-dimensional eigenspaces. The first step to overcome this difficulty is to
consider only K-invariant eigenfunctions of A. These eigenspaces are considerably
smaller—for G = SI(2,R) they are even one dimensional—but generically they are
still infinite dimensional. How can we solve this problem?

Notice that A commutes with the action of G on M as the Riemannian structure
of M is G-invariant. Thus C[A] is a subalgebra of the algebra D(M) of G-invariant
differential operators on M. Let us mention that only for dima = 1 for a the
Lie algebra of A we have D(M) = C[A] (for example, this is the case when G =
SI(2,R)). The algebra D(M) is commutative, as it was realized by Harish-Chandra
that the Iwasawa decomposition (1) gives rise to an isomorphism

(4) D(M) ~ S(a)™’

with S(a)"V the W-invariants in the symmetric algebra of a. One shows that the
K-invariants in a common eigenspace of D(M) form a one dimensional subspace.

As suggested by (4) we can parametrize common eigenspaces of D(M) by ele-
ments of af. For A € af we write ) for the unique normalized (i.e. ¢x(1) = 1)
K-fixed function in the eigenspace associated with A. One calls ¢, the spherical
function with parameter \.

An aesthetic drawback of the theory is that except for some few cases we will
never be able to find nice explicit formulas for spherical functions. However,
Harish-Chandra discovered an integral representation which is described next. Ac-
cording to the Iwasawa decomposition (1) every m € M corresponds to a tuple
(n(m),a(m)) € N x A. Then the integral formula for ¢ reads

(5) oalm) = [ ePeooneEm) g (e )
K
where p € a* is a certain spectral shift caused by the negative curvature of M.

Now we are ready to define the spherical transform on M, i.e., the Fourier-
transform on the K-invariant functions C2°(M)% ~ C>®(A)"Y on M (cf. (3)). The
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exponentials e¢ on the real line get replaced by the ¢, and we define the spherical
transform by

FiCEONK = =G FON = [ oam)m) dm
M
In order to discuss the L2-aspects let us introduce Harish-Chandra’s c-function

() = / o~ O loga(m) g
N

where N denotes the group of lower unipotent matrices. Using the integral represen-
tation (5), it is not too hard to show that ¢(A) is the coefficient of the leading term
in the asymptotic expansion of ¢y. Surprisingly, ¢(\) can be explicitly computed,
as was discovered by Karpelevic for G = SI(3,R) and established in full generality
by Gindikin and Karpelevic. The Plancherel Theorem for the spherical transform
(proved by Harish Chandra) then states that F establishes an isomorphism

dX )W
le(M)?

The main objective of the book of Jorgenson and Lang is to develop the theory
of spherical transform on M and give a proof of the Plancherel Theorem in the
spirit outlined above.

However, there is an alternative way to the Plancherel Theorem through repre-
sentation theory. The advantage of this method is that it applies to various kinds
of homogeneous spaces G/T" where T’ might be a symmetric or discrete subgroup of
G. This point of view is not the subject of the book, but I think it might be useful
for the reader to see another perspective.

The representation theoretic approach. The principle can be already seen on
the real line R. We consider the regular representation of the additive group R
on L%(R), i.e., the unitary representation L of R defined by translations in the
arguments of the functions:

L:R—U(L*R), (L@)f)(y)=fle+y) (fel’R),zyeR).

Notice, L is unitary as the Lebesgue measure is translation invariant. Now, how
does this representation decompose into irreducibles? Recall that the continuous
irreducible representations of R are the characters m¢(x) = €27*¢ parmametrized
through ¢ € C. Using the language of direct integrals of Hilbert spaces, the
Plancherel Theorem on L?(R) can be expressed as

53]

(L, L*(R)) ~ (/R e dg,/iﬂjcg dg) .

(2

L2(M)K ~ 2 (za

Here C¢ ~ C for all £ € iR. The important feature is that only unitary ¢, i.e.
¢ € 1R, appear in the decomposition of L into irreducibles. One calls those ¢
tempered, motivated by the fact that z — e?™®¢ defines a tempered distribution if
and only if £ € iR.

Let us now switch to L?(M) with M = G/K a Riemannian symmetric space.
The group G acts unitarily on L?(M) via left translation in the arguments. Then the
left regular representation (L, L?(M)) decomposes as a direct integral of irreducible
unitary representations of G. Based on an idea of Gelfand and Kostyuchenko,
Bernstein (cf. [Be88]) has shown that only the so-called tempered representations of
G can occur in the Plancherel-decomposition of L?(M). This together with some
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simple facts on the asymptotics of the spherical functions then equally leads to a
proof of the Plancherel Theorem (as was outlined by Bernstein in a seminar talk
at the MSRI in 2001).

2. PALEY-WIENER THEOREM

Again, let us first recall the result on the real line. For R > 0 write CF (R) for
the space of smooth functions with support in [— R, R]. Further we associate to R
the Paley- Wiener space

PWgr(R) := {f € O(C) : sup |V f(z)e FI"™?| < 00, N e N} .
zeC

Then the Paley- Wiener Theorem asserts that
F(CFR)) = PWg(R) .

Let us now look for the generalization to M. For R > 0 we write C'% (M) for the
space of smooth functions supported in the ball Bg := {z € M : d(z,1) < R} where
d denotes the Riemannian distance function. Then the Paley-Wiener Theorem for
M (established by Helgason) states that

F(CF (M)F) = PWg(ia*)" .

It is interesting to observe that the Paley-Wiener Theorem on M implies the
Plancherel Theorem, an observation made by Rosenberg. The book of Jorgenson
and Lang follows this strategy by first proving the Paley-Wiener Theorem and then
the Plancherel Theorem.

3. HEAT KERNEL TECHNIQUES

The heat kernel on the real line is given by

1 o2
pi(x) = \/?ﬂtefﬁ (t>0,zeR).

It has the property that (p:)i~o constitutes a Dirac-sequence; in particular
(6) LP=lmpxf=f (feLl’R).

Another important feature is that p;(z) extends holomorphically to an entire func-
tion p:(z) on the complex plane. This is relevant in the context of heat-kernel
transforms, which we summarize next.

For t > 0 let us define the Fock-space

FHO) =11 € 0©): I = 5 [ 1725 dz < oc)

This is a Hilbert space of holomorphic functions. The heat kernel transform or
Segal-Bargmann transform

H;: L*(R) — F2(C), f > analytic continuation of (p; * f)

is an isomorphism of Hilbert spaces.

While there is a concrete formula for the heat kernel on R, this is no longer the
case for Riemannian symmetric spaces (except for the complex ones). Using the
spectral resolution of the heat kernel p, on M = G/K and various estimates on
spherical functions, the authors establish (6) for p = 1, 2. In the last chapter Jorgen-
son and Lang point out (without proofs) how to obtain (6) in full generality using
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a concept of Flensted-Jensen which relates harmonic analysis on Sl(n, R)/ SO(n,R)
with harmonic analysis on the much simpler complex space Sl(n, C)/U(n).

Finally, let us mention that recently the domain of analytic continuation of p;
was discovered and the first progress made towards the isometry of the heat kernel
transform on M = G/K (cf. [KSO01]).

The standard reference book for the foundations of harmonic analysis on
Riemannian symmetric spaces is Helgason’s Groups and geometric analysis
(cf. [Hel84]). The book of Jorgenson and Lang makes a useful contribution by
exhibiting the theory on the example Sl(n,R)/SO(n,R). Restricting to this spe-
cific example allows the authors to verify certain facts directly, which otherwise
would have required some knowledge of semisimple Lie algebras and groups. For
my taste the introduction could have been more focused on the contents than on
certain political issues related with the people in the “field”. Also one realizes an
obsession of the authors to attribute a name to almost anything. The authors make
an effort in axiomatizing certain parts of the theory and give detailed proofs. This
makes the book readable and accessible for graduate students.
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