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STOCHASTIC ANALYSIS AND APPLICATIONS

S. R. S. VARADHAN

1. INTRODUCTION

The world we live in has never been very predictable, and randomness has always
been part of our lives. There is ample evidence that our ancestors did enjoy playing
games of chance, and the early development of probability theory had to do with
these games. The study of probability has always been motivated by potential
applications. Besides gambling, the stimulus has come from life insurance, pricing
of annuities, statistical modeling of errors in observations, genetics, etc.

By 1900, there had developed a fairly well understood body of work, although
it was not within an axiomatic framework. This prompted Hilbert to pose the
axiomatization of probability theory as one of his famous problems. Although
it was not until 1933 in [13] that Kolmogorov axiomatized probability theory by
making it part of measure theory, the subject continued to blossom in the early part
of the twentieth century at the hands of people like Lévy, Khintchin, and Wiener.

2. INFINITE DIMENSIONAL ANALYSIS

Wiener, in [27], was the first person to construct a measure, corresponding to
what we now call Brownian motion, on the space of R? valued continuous functions
on [0, 1], thereby making it possible to integrate legitimately in function spaces.

The basic ingredient in the construction of the Wiener measure is the kernel

1 Iy—xll“’]
p(t,z,y) = exp {—7
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and its relationship to the Wiener measure P through the formula

Plz(-) s x(t1) € A1, ..., x(tn) € Ay
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The function p is of course the fundamental solution of the heat equation
op 1
LA
at 27"
and this creates a basic connection between the Wiener measure and the Laplace

operator. Kolmogorov observed, in [12], that this relationship can be extended to a
large class of probability measures (Markov or diffusion processes) that generalize
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the Wiener measure on the one hand, and a large class of differential operators
(second order parabolic) that generalize the heat equation on the other:
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These are referred to respectlvely as Kolmogorov’s backward and forward equations.
1t6, in 1944, described a mapping of the space of trajectories that will directly
transform the Wiener measure into the more general measure that corresponds to
a given operator

or
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This transformation is defined in [9] by means of a system of stochastic differen-
tial equations

dyi(t) Zam £))da (£) + bi(y(t))dt

with y(0) = z, where
o(x)o*(z) = alx).

One big advantage of It6’s construction is that it bypasses the PDE, thereby
opening up the possibility of saying something about the solution of the PDE by
studying the properties of the SDE.

It is not as simple as it sounds. The functions z;(¢) are not of bounded variation
(almost surely with respect to the Wiener measure), and therefore even in integrated
form it is a task to make sense of the dz integrals

)=z + /ZUW s))dxz;(s /b

1t6 developed his theory of stochastic integration to take care of this sticky point,
including a stochastic calculus with special rules
d:L’i (t)di[,’k (t) = (5i’kdt,
dﬂ?i (f,)dt = 0,

and
dyi(t)dy;(t) = as ;(y(t))dt.
In integrated form the identity

F() — F(y(0)) = / (0" (4(5)V £ (). di(s)) + / (CF)(y(s))ds

is known as It0’s formula. An advantage of It6’s approach is that the matrix of
coefficients {a; ;(x)} can be semi-definite. Often in PDE, nondegeneracy is needed.

Another big advantage of It0’s approach is the possibility of dealing with infinite
systems just as easily as finite ones. With suitable regularity and proper definition
of norms, this can be realized. The PDE, on the other hand, is hard to study
directly in infinite dimensions.
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By a combination of methods from analysis (PDE) and probability (SDE), dif-
fusion processes in finite dimensional spaces were thoroughly studied during 1950—
1980.

The Wiener measure provides us with a reasonable integration theory in the
infinite dimensional space Q = Cy[[0,1]; RY. However it is not invariant with
respect to translations on €2, and in fact is not even quasi-invariant with respect to
all translations. It is however quasi-invariant with respect to translations from the
following dense subspace H C €:

r={nno = [ g, [ 156)1Pas < ).

One can therefore talk about the smoothness of a function, defined only almost
everywhere, in the direction h € H. The gradient operator V, exists, and it makes
sense to talk of ||Vjul|, existing in the L, sense. Since H has a natural Hilbert
structure, it also makes sense to talk about the squared gradient

> IVeuls,
i

where {e;} is an orthonormal basis of H. There are natural Sobolev spaces and cor-
responding spaces of distributions. Since we are in infinite dimensions, no amount
of L, regularity will yield continuity, but a very nice theory of differential analysis
can still be built up. This was initiated by Malliavin in [I6] and developed further
by others, including Kusuoka and Stroock in [14], [15], and [20].

A particularly interesting byproduct is Hormander’s theory of hypoellipticity,
which can be explained in terms of differential calculus on Wiener space and an
integration by parts formula. Using [t6’s theory, one can write the fundamental
solution p(t, z,y) of

0

5L

EP[8(y-(1) — y)).
The idea is to differentiate as many times as we need to with respect to z and y,
integrate by parts to get rid of unwanted derivatives, and express the answers as
Wiener integrals and estimate them.

The general method bears the name of Malliavin calculus and is an important
tool in the study of regularity of maps defined as stochastic integrals from one
infinite dimensional space to another. Clearly the study of infinite dimensional
spaces locally modeled after Wiener spaces will rely heavily on such a calculus.

One area from where problems are likely to come is nonlinear analysis in an
infinite dimensional setting.

Probability theory has always generated its problems by its contact with other
areas. There are very few problems that are generated by its own internal structure.
This is partly because, once stripped of everything else, a probability space is
essentially the unit interval with Lebesgue measure. If you have seen one you have
seen them all.

as

3. LARGE DISCRETE RANDOM STRUCTURES

Perhaps the most studied example of a discrete random structure is the Ising
model [8]. In its simplest version we have a finite lattice Ay C Z%, a state space
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Qn = {—1,1}*¥ of maps £(+) : Ay — {—1, 1}, and a probability measure depending
on a small number of parameters. Given the two parameters J and H, the Ising
measure on )y is the probability measure defined by

1
&) = T exp[—JEY (H, )],

where
E{(H.O = > @) - +2 Y K@) —gw)P+H Y £().
T, yEAN TEAN TEZLN
lz—y|=1 \;/g,\\i1

The interesting questions concern the behavior of the measures py on Q5 as N —
oo and the absence or persistence of the influence of the boundary conditions g,
after the infinite volume limit has been taken.

This is an area that has been very well studied as a statistical model for phase
transitions. While a lot is known, there are still some basic issues that are un-
resolved, even in the simplest model. There are issues of universality, etc., that
are still open. The infinite volume limits of these types of models provide natural
examples of random fields in Z% that are correlated. The recent results concern-
ing surface tension and the Wulff construction are excellent examples of interesting
detailed analysis of such systems in the strongly correlated region.

The subject of random graphs had its originals in a paper of Erdés and Rényi
[3]. The basic model is of a graph with n vertices in which some randomly chosen
edges are turned on while the others are shut down. The subtle interplay between
the probability with which the individual edges are turned on and the qualitative
behavior of the resulting graph for large values of n has been a fascinating subject
for study ever since the paper of Erdos and Rényi.

Percolation. If we take the standard square lattice in Z 4 with d > 2 and select
the nearest neighbor edges independently with probability p, there is a qualitative
change in the nature of the resultant infinite graph as p changes. For small p
the graph is just a collection of finite clusters, whereas for p large enough, with
probability 1, there is an infinite cluster. There are detailed studies regarding the
nature of this transition at a critical value 0 < p. < 1 of p. See [5].

The random cluster models of Fortuin and Kasteleyn [4] provide a unified point
of view, connecting percolation and Ising type models.

Recently there have been exciting developments [24], [I], and [I1] in situations
that appear at first glance to be different, but lead to the same phenomenon.
These have to do with (non-Gaussian) asymmetric fluctuations of certain extremal
problems.

1. Random matrix theory. We look at the largest eigenvalue Ay of a random
symmetric matrix with an orthogonally invariant Gaussian distribution.

2. We look at the length [ of the longest increasing subsequence of a random
permutation of 1,2,..., N.

3. Random growth models. We have a collection of independent random vari-
ables X; ; at each site in Z? and a path 7 connecting (0,0) and (M, N) that moves
only either up or to the right, and we define

G(M,N)=max » X, ;.
(i,j)em
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All these random variables exhibit non-Gaussian asymmetric fluctuations and
after rescaling have the same limiting distribution, known as the Tracy-Widom
distribution. Its distribution function is given by

2

P = e |- [ s)lutel]| de
where u is the solution of the Painlevé II equation
v’ =2u® + zu

with u ~ Ai(z) as z — oc.

The theory, as developed by P. Deift and others, depends on exact formulas and
a precise analysis of the asymptotic behavior of solutions of associated Riemann-
Hilbert problems.

To a probabilist there is a mystery here, and it is very likely that these results
will one day be part of a larger class of limit theorems.

Disordered systems. Random environments, etc. One of the earliest ex-
amples of a problem involving disorder is a random walk in a random environ-
ment. Let us take a family of independent random variables m;, —oco < j < o0,
with 0 < 7; < 1, and consider a random walk on Z with transition probabilities
Dz,at1 = Tz and py x—1 = 1 — m,. The random choices are made once and fixed for
all time. The asymptotic behavior of such a walk can be studied in detail for the
one dimensional nearest neighbor case. Other problems of a similar nature range
from the difficult to the impossibly difficult.

Roughly speaking, these problems deal with probability measures p,, where a is a
large or an infinite set of parameters {a,} indexed by z € A. If a; = a (a constant),
the situation is well understood. In problems of disorder, {a,} are assumed to be
random, chosen independently for each x and with a common distribution. One is
interested in properties that are shared by p, for almost all a. A random walk in
a random environment is one example. See [21].

The Sherrington-Kirkpatrick or S-K model consists of a family of probability

measures jiy = M’]B\;h’{g"*j} on {0,1}" depending on parameters 3, h, {gi ;}:

1
un{e} = 7o exp[—OBHny (e)],
N
where
1
Hy(e) = ——= Z Gi,j€i€; + h Z €i;
VN 1<i<j<N 1<i<N

{gi,;} is a realization of i.i.d. standard Gaussian random variables.
If h =0 and 8 < 1, the direction of the vector € is rather random, so that

vy |(€€)2
RN Xh [ e

is small for most {g; ;}. This is not expected to be true for § > 1, although what
is known is a slightly weaker form of the result for g > 1.

This is just one of several similar problems. See the recent work of Talagrand
[22] and [23] for detailed comments.
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The similar problem in the case of short range interactions, where

Hpy(e) = — Z Jz,y€a€y + hZem

(z,y):|z—y|=1

and the summation extends over nearest neighbors in Z¢, is even less understood.
See for instance the article [17] by Newman and Stein.

4. SCALING LIMITS

Another area that has been active is the dynamical behavior of large or infinite
interacting systems. The evolution may have conserved quantities, in which case the
evolution of slow modes can be studied under hydrodynamical scaling, averaging
out the fast modes with respect to appropriate invariant distributions.

Fairly general methods involving entropy, rate of entropy production and relative
entropy have been developed.

In the case of systems without conserved quantities, one of the issues is whether
the rate of approach to equilibrium slows down as the system size increases. This
can be measured in terms of either the spectral gap or the log-Sobolev constant.
Conditions for these estimates to hold uniformly are known. They can be used to
estimate the accuracy of simulations. See Stroock and Zegarlinski [19].

In the presence of conserved quantities, the spectral gaps and the log-Sobolev
constants become degenerate with increasing volume, and the rate can be guessed
by looking at the slow modes. That this is in fact the case is a useful tool in the
analysis of these systems and is known for several models. See Yau [29], or Cancrini
and Martinelli [2].

A typical class of models that illustrates the scaling behavior is known as simple
exclusion processes. See [25], [26] and [28].

One has, as physical space, either Z¢ or Z]‘%,, the periodic lattice in Z¢ of N¢ ele-
ments. Each site can have either one particle or no particle. The state is described
by {n(x) : @ € Z3}.

The dynamics is specified by the generator

(AN M) = (@) —n)ply — 2)[f (™) — f(n)]-

The scaling x — £ of space imbeds Z4 into the d-torus 7¢. The micro-state n

can be replaced by a macro-state

() = 502 0%
xr
which as n — oo turns into the particle density p(6).
Assuming that the initial configuration leads to the macro-state po(6), the dy-
namical behavior of the large system should be describable in terms of po(-).
There are two cases. If m = >_ zp(z), either m = 0 or m # 0. Let us first look at
m # 0. The special case d =1, p(1) = 1 is typical. In this case one needs to speed
up the time scale by a factor of N as well, and the micro-state at time ¢ is, with
probability nearly 1, close to the macro-state p(t, 6), which is the unique entropic

solution of the Burgers equation

pt+ [p(1 —p)lo = 0.
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The secondary issues of probabilities of large deviations can also be studied for
this model. See Jensen [10]. Given p(-,-), the question of estimating the probability

Plrn () = p(-, )] = exp[=N I(p(:,-)) + o(N)]
with an explicit I has a simple answer: I(p(-,-)) = oo unless p(:,-) is also a weak

solution, and then I(p(:,-)) is the precise amount by which the entropy condition
is violated for the convex functional

h(p) = plogp + (1 — p)log(1l — p);
that is,

T
I(p( ) = / 10+l ot

In particular, one can show that

1 b if h >0
lim — log Elexp{AN ()} =1 4 -
N—oo N g Elexp{nN(1)}] {tanh% if h <0,
and one can compare the fluctuation theory with the large deviation estimate.
The case m = 0 exhibits more complex behavior. There exists A(p) such that
the equality

1
Pt = §VA(P)VP

describes the evolution of the macroscopic state in the new time scale, which now
needs to be speeded up by a factor of N2. The calculation of A(p) is in general
rather complicated. However, if p is symmetric, A(p) simplifies to A = > z2® zp(z).

Again the problems of large deviation as well as the motion of a tracer particle
have satisfactory solutions. S(p) is the self-diffusion coefficient in equilibrium, i.e.,
i\/? ~ (3, and § has dispersion S(p). Instead of just looking at the evolution of the
macro-state, we may wish to consider the random process

1
J

which describes the collective history of all the particles. The limit
Jim R =@
exists. Both @ and the rate function I(R) in the large deviation estimate
P[Ryn =~ R] = exp[-N%I(R) + o(N)]

have explicit exact descriptions. See Quastel, Rezakhanlou, and Varadhan [18].

The models that we have described have a fairly regular structure. The phys-
ical space is the lattice Z¢ with connections between nearby sites. The rates are
translation invariant.

One can imagine disordered versions of these problems. There have been some
studies where the disorder is only in the rates. See [6] and [7]. But a more chal-
lenging problem is when the underlying structure itself is some sort of a random
graph.

Whereas problems coming from physics present a more regular structure, prob-
lems from the social sciences present far more disorder.

Today more sophisticated models are being used in finance, insurance and other
areas involving an analysis of uncertainty and risk. If we wish to fully understand
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how large systems behave and why, one possible approach is to specify the model
at the microscopic level and develop methods that allow us to make predictions of
macroscopic behavior.
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