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In the course of the 1950’s Jacques Tits developed the notion of a building
with the aim, at first, of providing a systematic geometric interpretation of the
exceptional complex Lie groups. The theory turned out to apply to arbitrary simple
algebraic groups over an arbitrary field. More precisely, to each absolutely simple
algebraic group of positive rank (i.e. isotropic), there is a canonically associated
building (which is thick irreducible and spherical) of the same rank defined in
terms of parabolic subgroups. These are the spherical buildings of algebraic type.
Spherical buildings can also be defined in terms of the geometry of a classical group
(e.g. unitary, orthogonal, etc., of finite Witt index or linear of finite dimension)
over an arbitrary field or skew-field. These are the spherical buildings of classical
type. (A spherical building of classical type is not of algebraic type if, for example,
the skew-field is not finite dimensional over its center.) A third much smaller family
of spherical buildings consists of those associated with certain “mixed” groups –
essentially algebraic groups in some sense defined over a pair of fields k and K
of characteristic p, where Kp ⊂ k ⊂ K and p is two or three. These are the
spherical buildings of mixed type. In 1974, Tits proved that every thick irreducible
spherical building of rank at least three is of algebraic, classical or mixed type
[7]. The spherical building of classical type associated with a linear group over a
field or skew-field is essentially the corresponding projective space. Tits’ result is
thus, in some sense, a grand generalization of the Veblen-Young characterization of
projective spaces [9].

Around the same time, Bernd Fischer was developing the theory of 3-transposi-
tions. A conjugacy class D of a group G is called a class of 3-transpositions if each
element ofD is of order two and any two elements ofD either commute or generate a
subgroup isomorphic to the symmetric group S3 (equivalently, |d| = 2 for all d ∈ D
and |de| ≤ 3 for all d, e ∈ D). In the basic example, G = Sn for n arbitrary and D
is the class of transpositions in G, i.e. the permutations which just interchange two
letters and leave the others fixed. This work culminated (in 1971) in the result that
if G is a finite group generated by a class of 3-transpositions which does not have
any solvable normal subgroups, then |G/G′| ≤ 2 (where G′ denotes the commutator
subgroup of G) and G′ is either an alternating group or one of a few classical groups
defined over the field with two or three elements or one of three previously unknown
simple groups subsequently denoted Fi22, Fi23 and Fi′24 [4]. Although this seems to
be a much more special and almost whimsical result compared to Tits’ classifica-
tion of spherical buildings, Fischer’s result caused a comparable stir, at least among
finite group theorists. This stir was due, of course, to the discovery of the three spo-
radic simple groups but even more to the sheer beauty and originality of Fischer’s
arguments. Generalizations followed quickly. His classification of groups generated
by 3-transpositions was generalized to {3, 4}+-transpositions by Franz Timmesfeld
(a student of Fischer), to odd-transpositions by Michael Aschbacher and then to
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root involutions, again by Timmesfeld. (Fischer himself was led through the consid-
eration of {3, 4}-transpositions to the discovery of the Monster and Baby Monster
sporadic groups. The Monster was discovered simultaneously and constructed by
Robert Griess [5]. The classification of groups generated by 3-transpositions was
extended to the infinite case by Hans Cuypers and Jon Hall [3].) This work and
subsequent developments had an enormous influence on the eventual classification
of finite simple groups. In the present book, Timmesfeld presents the most far-
reaching advances in these directions – the theory and classification of what he
calls “abstract root groups” – from which one can see that Fischer’s work was a lot
closer to Tits’ theory of buildings than anyone suspected at the time.

In the theory of abstract root groups, Fischer’s 3-transpositions (certain elements
of order two) are replaced by subgroups (the abstract root groups), and his condition
that two non-commuting 3-transpositions generate a symmetric group S3 is replaced
by the condition that two non-commuting abstract root groups generate a subgroup
which either fulfills a certain condition implying it is nilpotent or is “a group of
rank one.” Let X be the subgroup generated by two groups A and B and let Ω be
the conjugacy class of A in X . Then X is a group of rank one (equivalently: X has
a split BN-pair of rank one) if B ∈ Ω, X acts 2-transitively on Ω and A is nilpotent
and acts regularly on Ω\{A}.

This book consists of five chapters. Chapter I is devoted to a thorough study
of groups of rank one. Of course, S3 is such a group (with A and B any two sub-
groups of order two), but there are many known families of such groups defined over
arbitrary fields, skew-fields, etc., some of them involving pseudo-quadratic forms,
Cayley-Dickson division algebras, etc. (Notice that the assumption of finiteness is
now gone.) This chapter describes important examples (and serves as an introduc-
tion to the algebraic structures needed to describe them) and gives basic results
on the structure of groups of rank one. In fact, this is the best collection of such
results I know. Classification, however, seems to be out of the question, at least for
the forseeable future.

Chapter II introduces groups generated by abstract root groups, again presents
many families of examples, introduces the labeled graph on the set of abstract root
groups which is the principal organizing tool of the whole theory (and Fischer’s
legacy) and begins to use it to obtain basic structural results about groups generated
by abstract root groups. In this chapter, it is also shown how to associate a group
generated by abstract root groups with a building. More precisely, let ∆ be a thick
irreducible spherical building of rank n. Suppose that ∆ is Moufang. (We will
say something about this important property below; here let us just note that this
condition is automatically fulfilled if n ≥ 3.) Then associated with each root α
(certain substructures of other important substructures called apartments) of ∆
is a certain subgroup Uα of Aut(∆). The roots lying in a given apartment of ∆
can be canonically identified with the roots of a certain (not necessarily reduced)
root system Φ. In §5, it is shown that if α is a highest root of Φ, then the set of
subgroups of Aut(∆) conjugate to Uα forms a class of abstract root groups (except
in the case that n = 2 and ∆ is a generalized octagon) in the subgroup of Aut(∆)
they generate. These are the “groups of Lie type” in the title; in almost all cases,
they are simple. In the classical case, ∆ is the building associated with a projective
space or a polar space of finite rank. Projective spaces and polar spaces of infinite
rank give rise to further groups generated by abstract root groups.
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Chapter III is the most important one. It contains the complete proof that
the only groups generated by a class of abstract root groups having no non-trivial
solvable subgroup (a condition which can be made much more precise), with at
least two commuting root groups and not involving groups of rank one defined
over a field with less than four elements (this keeps the three sporadic groups
generated by 3-transpositions from reappearing) are those coming from a Moufang
spherical building of rank at least two or from a projective space or polar space of
infinite rank. This is a difficult and deep result which builds on a whole tradition
of characterizations involving different families of simple groups and the various
kinds of geometries on which they act as well as the whole machinery of abstract
root groups developed by Timmesfeld. Generically, Timmesfeld’s strategy is to
construct (in each of many cases) a point-line geometry associated with the target
building (or polar space, etc.), thereby reducing the problem to one of several known
classification results, most of which either depend on1 or are a part of 2 or grew out
of 3 or were subsumed in4 Tits’ classification of spherical buildings of rank at least
three. For the geometries of rank two which arise, this means appealing to the
classification of Moufang polygons [8].

A (thick irreducible) spherical building of rank two is also called a generalized
polygon. Generalized polygons are too numerous to classify (generalized triangles
and projective planes are equivalent notions, for instance), but Tits observed that
the generalized polygons which appear as the rank two residues of a spherical build-
ing of rank at least three as well as all those which arise as the spherical building
associated with an algebraic, classical or mixed group of rank two all exhibit a
symmetry property he called Moufang (in honor of Ruth Moufang, a pioneer in the
characterization of projective planes). In fact, the Moufang condition can be for-
mulated for spherical buildings of arbitrary rank, and the main result of the famous
Chapter 4 of Tits’ Lecture Notes says (in other language) that a thick irreducible
spherical building of rank at least three automatically has this property. This is
the result which makes the classification of these buildings possible. Tits’ proof of
it is an astonishing tour de force.

Chapters IV and V (the last two) are devoted to applications of the classification
of abstract root groups, Chapter IV to a new proof of the classification of finite
groups generated by root involutions and Chapter V to results on quadratic pairs
and subgroups of Lie type groups generated by long root elements.

The theory of abstract root groups and the theory of spherical buildings both
have as their theme the mysterious and deep connection between group theory and
geometry. Although in the end (not to imply that either theory is at its end!) the
two theories result in characterizations of (almost) the same families of groups, they
offer several interesting points of contrast. The notion of a spherical building was
derived from a consideration of simple algebraic groups over an arbitrary field k. It
resulted in a theory which almost as a footnote applies also to finite groups (i.e. to
the case when k is finite). The notion of abstract root groups, on the other hand,
grew from Fischer’s work on 3-transpositions. This work was thoroughly finite in

1e.g. the characterization of parapolar spaces by Arjeh Cohen and Bruce Cooperstein [2]
2e.g. the characterizations of metasymplectic spaces, of buildings of type D4 and of the excep-

tional polar spaces of rank three
3e.g. the characterization of polar spaces by Francis Buekenhout and Ernie Shult [1] and the

characterization of polar spaces of infinite rank by Peter Johnson [6]
4e.g. early work on classical “polar geometries” by F. D. Veldkamp [10]
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nature (or at least it certainly seemed so at the time), with much of its focus on
the three new sporadic groups to which it gave rise. In a spherical building, groups
of rank one appear as groups generated by pairs of “opposite” root groups, i.e.
root groups Uα and Uβ such that the union of α and β is an apartment. As noted
above, we are far from a classification of groups of rank one. In the classification
of Moufang buildings, in fact, these subgroups are avoided to the maximal extent
possible. The philosophy of abstract root groups is just the opposite – groups of
rank one are enshrined in the hypothesis themselves and play a central role in the
whole theory.

Timmesfeld’s classification of abstract root groups is a major achievement and
the culmination of three decades worth of remarkable developments. This book is
a valuable document for all those interested in simple groups and the geometries
on which they act.
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