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In the late sixties, Langlands proposed some problems on automorphic forms.
Elaborated upon and tested in special cases, these have grown into a web of far-
reaching conjectures linking representation theory, number theory and arithmetic
geometry, now known as the Langlands program. In 1998, Harris and Taylor an-
nounced a proof of an essential part of the program, the local Langlands conjecture
for GL,, of a p-adic field. This book gives a full account of their proof. It is based on
a careful study of the bad reduction of certain Shimura varieties, itself an achieve-
ment of independent interest. My first and principal goal here is to indicate the
statement and, in part, context of the conjecture. We will then turn to Harris and
Taylor’s work.

1. MOTIVATION

We begin with the motivating case of class field theory. Let F' be a number field,
that is, a finite extension of Q, also called a global field of characteristic zero. A
finite extension of F is called abelian if it is Galois with abelian Galois group. Class
field theory describes such extensions and their Galois groups directly in terms of
the arithmetic of F'. It can be elegantly formulated using the ring of adeles Ap of
F.

To describe this ring, suppose first that F' = Q. Then for each prime p, we have
the p-adic absolute value | |, on Q. Thus if z = p"r/s € Q* with r, s,n € Z such
that p 1 rs, then

[zl =p~"
The completion of Q with respect to | |, is the field Q, of p-adic numbers. The
absolute value | |, extends to an absolute value on Q, which we again denote
by | |p. The elements = of Q, with |z|, < 1 form the unique maximal compact
subring Z,. This is a principal ideal domain with unique nonzero prime ideal pZ,.
There is also the prime at infinity for which | |« is the standard absolute value
so that the completion Q. = R. The fields Q, for p < oo are exactly the locally
compact non-discrete fields (up to isomorphism) that contain Q as a dense subfield.

2000 Mathematics Subject Classification. 11G18, 11F70, 14G35, 22E50.

(©2003 American Mathematical Society
239



240 BOOK REVIEWS

Then Ag is the subring of [[ - Q, of all (z;,) such that z,, € Z, for all but finitely
many p. It carries a natural locally compact topology, and Q embeds diagonally as
a discrete subgroup.

In the general case, A is again defined in terms of locally compact completions
F, of I indexed by the places v of F'. There are a finite number of archimedean
completions F,, = R or C corresponding to the infinite places given by embeddings
of F in R or C (up to complex conjugation). Then there are an infinite number
of non-archimedean completions. These correspond to the finite places v of F', one
for each prime ideal in the ring of integers of F' as for F' = Q. If the prime ideal
given by v contains pZ, then F, is a p-adic field, that is, a finite extension of Q,.
The integral closure of Z, in F,, is then the unique maximal compact subring O,
of F,. It is again a principal ideal domain with a unique nonzero prime ideal P,,.
Any generator of P, is called a uniformizer.

Then Ap consists of all (z,) in [[, F, such that =, € O, for all but finitely many
v. Again it carries a natural locally compact topology, and F' embeds diagonally
as a discrete subgroup. More generally, if G is a linear algebraic group over F,
then the topology on A induces a locally compact topology on G(Ar) and G(F)
embeds as a discrete subgroup. In particular, if G = GL;, we obtain the locally
compact groups GLi(Ar) = A} and GL1(Ap)/GL,(F) = AL /F*.

Class field theory gives an explicit bijection between the finite abelian extensions
of F and the open subgroups of A% /F* of finite index. The Galois group of a given
finite extension of F' is then canonically isomorphic to the quotient of A% /EF™ by the
corresponding open subgroup. This, in explicit form, is Artin’s famous reciprocity
law. We can express these isomorphisms all at once in terms of the Galois group of
an algebraic closure F of F, called the absolute Galois group of F. Note first that
F is a union of finite Galois extensions E of F' and that each F-automorphism of
E extends to F. It follows that

Gal(F/F) = lim Gal(E/F)

where the inverse limit is over all finite Galois extensions F of F in F' (with respect
to the restriction maps Gal(E1/F) — Gal(E2/F) for E1 D Es). If we give each
Gal(E/F) the discrete topology, then lim. Gal(E/F") becomes a compact topologi-
cal group (as a closed subgroup of [[ Gal(E/F) with the product topology). This is
the Krull topology on Gal(F/F). Write Gal(F/F)*" for the quotient of Gal(F/F)
by the closure of its commutator subgroup. Then Artin reciprocity yields an explicit
continuous surjective homomorphism

rp: AS/FX — Gal(F/F)™.

There is a similar description of the abelian extensions of the completions F;, of
F. Of course, for the archimedean completions this is trivial. The non-archimedean
case constitutes local class field theory. A local field is a non-discrete locally com-
pact field. Any such non-archimedean field of characteristic zero is isomorphic to a
finite extension of some QQ, and arises as F, for appropriate F' and v, in general in
several different ways.

Suppose then that K is a p-adic field. Let O denote the maximal compact
subring of K and P the unique nonzero prime ideal in O. Fix an algebraic closure
K of K. The integral closure O of O in K has a unique nonzero prime ideal P, and
k = O/P is an algebraic closure of the finite residue field k = O/P of K. There is
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therefore a natural homomorphism
Gal(K/K) — Gal(k/k).

This map is continuous and surjective. Its kernel is called the inertia subgroup Ix.
Let ¢ = |k|. Then Gal(k/k) is topologically generated by the Frobenius element
x + 29. Any element of Gal(K /K) which maps onto z + ¢ is called a Frobenius
element, denoted Fr, of Gal(K/K). There is a local Artin reciprocity law which
provides a continuous, now injective, homomorphism

ri : KX — Gal(K/K)™

with dense image. A key property of rk is that it maps uniformizers to (the images
of) Frobenius elements.

It is often more convenient to rephrase this in terms of the Weil group Wx of K.
By definition, Wy consists of those elements of Gal(K/K) that act by an integer
power of Frobenius on k. It carries a unique locally compact topology for which
I is an open subgroup (with the induced topology from Gal(K/K)). Then rx
induces an isomorphism of topological groups K * = W;}b.

The two class field theories, local and global, are closely related. Indeed, for
any finite place v of F', let GG, denote the absolute Galois group of F,. Then there
is a family of conjugate embeddings G, — Gal(F/F) and hence a well-defined
homomorphism G2 — Gal(F/F)2>. Precomposing with the local Artin maps
TE,, we obtain maps FX — Gal(F/F)*. The global Artin map 7 is then built
from these local maps, via the obvious embeddings F,* — Ap. (Of course, we have
ignored the archimedean places, but these are easily treated.) In particular, rz takes
uniformizers in any F,¢ (for v finite) to the images of the Frobenius elements of G,
in Gal(F/F)2b. Tt is determined by this property and its triviality on F*. There
are now several purely local proofs of local class field theory. Once the local theory
is intrinsically established, the global theory follows quickly. However, historically,
the global theory was proved first and the local theory obtained as a consequence.
The local Langlands conjecture for GL,, can be viewed as a generalization of local
class field theory. Harris and Taylor’s work and the alternative approach due to
Henniart ([5], [7]) rely crucially on global results, in the spirit of the initial proofs
of local class field theory.

2. CONJECTURES

A direct description of Gal(F/F) in the manner of global class field theory’s
description of Gal(F/F)2P, if such exists, appears completely out of reach. What
emerges from Langlands’ work is a dual viewpoint which links representations of
Gal(F/F) and representations of general linear groups over Ar. From this perspec-
tive, global class field theory is presented as a bijective correspondence x <> x org
between continuous characters y : Gal(F/F) — C* and finite order complex char-
acters of Aj/F*. In place of characters or one-dimensional representations, one
considers automorphic representations of GL,(Ar). In rough terms, these are es-
sentially the irreducible constituents of the regular representation of GL,(Ar) on
L*(GL,(Ar)/GL,(F)). For n =2 and F = Q, they are closely related to classical
modular forms and Maass forms. The class of cuspidal automorphic representations,
analagous to classical cusp forms, plays a special role in that a general automorphic

representation of GL,(Ar) is built from cuspidal automorphic representations of
GL,,(Ap) for m < n.
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Since GL,,(AF) is assembled from the groups GL, (F,), as v varies through the
places of F, an irreducible representation II of GL, (Ar) decomposes as a suitably
interpreted infinite product @), II, where each II, is an irreducible representation
of GL,,(F,). For all but finitely many v, each local component II,, must be unram-
ified. This means that it admits a nonzero fixed vector for the maximal compact
subgroup GL,(0,) of GL,(F,). Representations of this sort are classified by the
Satake isomorphism which establishes a bijection between isomorphism classes of
unramified representations of GL,(F,) and elements of (C*)™ modulo permuta-
tions. The unordered n-tuple corresponding to an unramified representation is
called its Satake parameter. A cuspidal automorphic representation IT is rigid in
that it is determined by its local unramified components II,, for any collection of
v that includes all but finitely many places.

On the Galois side, one considers complex representations, that is, continuous
homomorphisms

¥ : Gal(F/F) — AutcV

with V finite-dimensional over C. Such representations are unramified almost ev-
erywhere, in the sense that, for all but finitely many v, the restriction ¥, = ¥ | G,
is trivial on the inertia subgroup of G,. Let Fr, denote a Frobenius element of G,,.
Then the irreducible constituents of ¥ are determined by the family {X,(Fr,)},
again for any collection of v that includes all but finitely many places.

Langlands has conjectured that if ¥ is an irreducible complex representation of
Gal(F/F) of dimension n, then there is an automorphic cuspidal representation
IT = II(X) of GL,(AF) such that, at those finite places v at which ¥, and II, are
unramified, the Satake parameter of II, is given by the eigenvalues of ¥, (Fr,). Of
course, the representation II(X) is uniquely determined, if it exists, by the rigid-
ity property of cuspidal automorphic representations stated above. The equality
between Satake parameters and eigenvalues of Frobenius elements generalizes the
relation between uniformizers and Frobenius elements in class field theory. The
conjecture includes, as a special case, the famous conjecture of Artin on the holo-
morphicity of L-functions of (non-trivial) complex irreducible Galois representa-
tions. However, the cuspidal automorphic representations that can occur in this
conjectural correspondence are quite restricted.

Arithmetic geometry is a rich source of further Galois representations. In par-
ticular, for a prime [, the [-adic cohomology groups of suitable varieties over F' give
rise to l-adic Galois representations, that is, suitably continuous homomorphisms

Y : Gal(F/F) — Autg, (V)

where V is now finite-dimensional over an algebraic closure Q; of Q;. Such rep-
resentations, coming from geometry, are again unramified almost everywhere. In
contrast to the complex case, they do not in general have finite image.

There is again a similar conjecture relating irreducible [-adic Galois representa-
tions ¥ and cuspidal automorphic representations II, and all cuspidal automorphic
representations in a wide class should occur in these correspondences. To con-
vey something of its depth, note that the conjecture includes, as a very special
case, the statement that every elliptic curve over Q is modular, proved recently
by Breuil-Conrad-Diamond-Taylor following the path-breaking work of Wiles and
Taylor-Wiles.
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These global correspondences ¥ < II should give rise to, and arise from, similar
local correspondences ¥, <= II,,. For a p-adic field K, the desired local correspon-
dence is most easily stated in terms of the Weil group Wx of K. For this one
needs the notion of a Weil-Deligne representation of Wi . This is a pair o = (p, N)
with p: Wi — AutcV a continuous homomorphism (for V' finite-dimensional) and
N :V — V a nilpotent endomorphism such that

p(w)Np(w)™t = ¢ VN, w e Wk.

Here v(w) is the power of Frobenius by which w acts on an algebraic closure of the
residue field of K. For [ # p continuous l-adic representations of Wy or Gal(K /K)
can be understood in these terms [2]. Of course, if N = 0, then o is just an
ordinary continuous complex representation of Wy . We say that ¢ is semisimple if
p is semisimple. The dimension of ¢ is simply the dimension of p.

On the GL,, side, we need the notion of an irreducible smooth representation
m = (m, V) of GL,(K). This is a complex vector space V and a homomorphism
7 : GLy(K) — AutcV such that 1) the stabilizer of each vector in V is open for the
natural topology on GL,,(K) induced by the p-adic topology on K (smoothness) and
2) V has no non-trivial -stable subspaces (irreducibility). Such representations are
closely related to the local components of automorphic representations of GL, (Ar)
at finite places v with F;, = K. The space V is almost always infinite-dimensional.
For any smooth irreducible 7, the center of GL,(K) & K* acts by a smooth
homomorphism w, : K* — C*. Of course, for any smooth homomorphism y :
K* — C*, the representation wx given by g — m(g)x(det g) is again smooth and
irreducible. Similarly, one can also twist a Weil-Deligne representation by a smooth,
or equivalently continuous, character of Wi

The local Langlands conjecture for GL, roughly asserts that the irreducible
smooth representations of the groups GL, (K ) mirror the arithmetic of the alge-
braic extensions of K. To formulate it more precisely, let A,,(K) denote the set of
isomorphism classes of irreducible smooth representations of GL,(K) and G, (K)
the set of isomorphism classes of semisimple Weil-Deligne representations of dimen-
sion n. Then the conjecture asserts that there is a family of bijections o, = oy K,
forn>1,

% o (1)t Ap(K) — G (K)

satisfying the following properties:
L. Under the isomorphism K* = W2P of local class field theory, the determinant of
o(m) corresponds to the central character w, of w. In particular, o; is induced by
local class field theory.
II. For each x in A;(K) and 7 € A, (K),

on(mx) = on(m)o1(x)-
III. The dual 7 of an irreducible smooth representation 7 of GL, (K) and the dual
oV of a Weil-Deligne representation o of Wy are defined in the obvious way. The
bijections o, preserve duals: for 7 € A, (K),

on(mY) = on(m)Y.
IV. Finally and most crucially the bijections preserve certain arithmetic invariants.
On the GL,, side, these are the L-factors and e-factors of pairs defined in [8]. They
also arise from a wider construction due to Shahidi. These factors contribute to
corresponding objects attached to pairs of automorphic representations which play
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a key role in the global theory. On the Galois side, if (p, V') is a representation of
Wik and VI& denotes its space of Ix-fixed vectors, then the Artin L-factor L(s, p)
is defined by
L(s, p) = det(1 — p(Fr)g~* : V)1,

where s is a complex variable. Thus if p is unramified, then L(s, p) simply records
the eigenvalues of p(Fr). The definition extends naturally to Weil-Deligne repre-
sentations. There is also an e-factor for a Weil-Deligne representation. Roughly
speaking, it reflects the complexity of the restriction of the representation to Ix.
There is an obvious notion of tensor product for Weil-Deligne representations. Now
let 7 € A, (K), n" € A,/ (K). The final requirement then is that the L-factor and
e-factor for o(m) ® o(n’) should coincide with the L-factor and e-factor of the
pair (m,7"). The L-factor condition implies that o, induces the bijection between
unramified representations of G L, (K) and unramified semisimple representations
of Wgk of dimension n for which Satake parameters correspond to eigenvalues of
Frobenius, as demanded by compatibility with the global conjectures.

Langlands has deemed the emphasis on e-factors in this current formulation
unsatisfactory. With a much deeper understanding of the representation theory of
p-adic groups, it may be possible to express and prove the conjecture in a more
natural way, but at present this seems a long way off.

The semisimple Weil-Deligne representations of Wy of dimension n are con-
structed in a canonical way from the m-dimensional irreducible representations
of Wi for m < n. On the GL,, side, there is a parallel, though much deeper,
procedure—the Zelevinsky classification [I0]—that assembles the irreducible
smooth representations of GL,(K) from certain building blocks, the irreducible
supercuspidal representations of GL,,(K) for m < n. These constructions are
compatible with the local Langlands conjecture. More precisely, let A% (K) de-
note the set of isomorphism classes of irreducible supercuspidal representations of
GL,(K) and G?(K) the set of isomorphism classes of irreducible representations of
dimension n of Wx. Suppose that 0 : A%(K) — G(K) is a family of bijections
satisfying I-IV. Then the maps ¢¥ extend to bijections o, : A, (K) — G,(K) that
again satisfy I-TV. Moreover, by work of Henniart announced in [7], there is at most
one set of bijections o, satisfying these requirements. In particular, the certainly
natural procedure of extending the maps o¥ to the maps o, is necessarily unique.
In earlier work, Henniart had shown that the bijections o¥ are uniquely determined
by preservation of e-factors [4].

3. THEOREMS

The problem then was to prove that the maps ¢ actually exist. Harris and
Taylor accomplish this by generalizing an approach of Deligne in the case n = 2
and K = Q,. Deligne used the geometry of modular curves to produce a corre-
spondence between certain cuspidal automorphic representations of GLz2(Ag) and
certain global Galois representations. From this, with much work, one obtains a
well-defined local correspondence that meets the necessary requirements.

Shimura varieties are a generalization of modular curves with a similar rich
arithmetic. Examples arise naturally in the study of moduli problems for abelian
varieties. From the initial definition they appear as complex manifolds, but they
are known to have a canonical variety structure, by work of Baily and Borel. Fur-
ther they admit canonical models over number fields, and Langlands has proposed
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that their Hasse-Weil zeta functions can be understood in terms of automorphic
representations. However, there are substantial technical obstacles to realizing this
proposal. Kottwitz isolated a class of Shimura varieties, attached to certain twisted
unitary groups over suitable number fields F', where most of these obstacles could be
overcome. These are the varieties used by Harris and Taylor, following a suggestion
of Carayol.

They realize K as F, for a finite place v of F. The [-adic cohomology of the
Shimura varieties gives rise to a global correspondence between certain cuspidal
automorphic representations II and certain global Galois representations X. From
a careful study of the bad reduction of these varieties, they show that the semisim-
plification of ¥, depends only on II, and arises from a geometric construction
involving purely local objects. In particular, this gives a geometric model of the lo-
cal Langlands correspondence (for supercuspidals) in spaces of vanishing cycles, in
the spirit of earlier predictions of Carayol. This requires a result of Berkovich which
is included in an appendix. The strategy of obtaining the local correspondence by
global means is analogous to the initial proofs of local class field theory. While
they modestly describe their work as simply a natural generalization of Deligne’s,
the technical complications are formidable and require an array of sophisticated
techniques, many beyond the ken of this reviewer.

A few months after Harris and Taylor circulated a preliminary version of their
work, Henniart found a clever and considerably more direct proof of the existence of
the correspondence. It again relies in an essential way on the geometry of Shimura
varieties but avoids consideration of places of bad reduction. However, it does not
give a geometric model of the local correspondence that is compatible with many
instances of the global Langlands correspondence. Neither proof gives an explicit
description of the maps o which remains as a fundamental open problem. Bushnell
and Henniart have made much progress on this using the classification of AY (K)
via restriction to compact open subgroups, due to Bushnell and Kutzko.

The Langlands conjectures also make sense for local and global fields of positive
characteristic. Here the local conjecture for GL,, was proved in the early nineties
by Laumon, Rapoport and Stuhler. More recently Lafforgue, in a celebrated tour
de force, has established the global correspondence, building on earlier ideas of
Drinfeld. However, the tools he uses are unavailable in the number field case where
a general solution of the corresponding problem is likely a long way off.

There are now several good expository accounts of the proofs of Harris and
Taylor and of Henniart. In particular, Carayol’s Bourbaki report [1] gives a detailed
overview of the geometric aspects of Harris and Taylor’s work. Henniart’s paper
[6] stresses the local-global principles underlying both approaches. In addition,
Taylor’s account of his Beijing ICM talk [9], written expressly for nonspecialists,
discusses the broader global conjectures hinted at above. Harris’” ICM talk [3]
reports on some recent developments and highlights several natural open problems.

Finally, the book itself is clearly and carefully written. In sum, it represents an
awe-inspiring achievement and is a model of good exposition.
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